Variation of Hodge structure and enumerating tilings of surfaces by triangles and squares
[Variation de structure de Hodge et énumération de pavages de surfaces par des triangles et des carrés]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 831-857.

Soit S une surface connexe fermée orientée de genre g. Étant donnée une triangulation (resp. quadrangulation) de S, on définit l’indice d’un sommet comme étant le nombre d’arêtes partant de ce sommet moins 6 (resp. moins 4). On appelle profil de la triangulation (resp. quadrangulation) l’ensemble des indices non nuls. Si κ est le profil de triangulations (resp. quadrangulations) de S, pour tout m >0 , on note 𝒯(κ,m) (resp. 𝒬(κ,m)) l’ensemble des (classes d’équivalence de) triangulations (resp. quadrangulations) de profil κ qui contiennent au plus m triangles (resp. carrés). Dans cet article, nous montrons que si κ est un profil de triangulations (resp. quadrangulations) de S tel qu’aucun des indices de κ n’est divisible par 6 (resp. par 4), alors 𝒯(κ,m)c 3 (κ)m 2g+|κ|-2 (resp. 𝒬(κ,m)c 4 (κ)m 2g+|κ|-2 ), où c 3 (κ)·(3π) 2g+|κ|-2 et c 4 (κ)·π 2g+|κ|-2 . La preuve repose sur un résultat de J. Kollár [24] qui fait le lien entre la courbure de la métrique de Hogde sur les sous-fibrés vectoriels d’une variation de structure de Hodge sur une variété algébrique, et les classes de Chern de leurs extensions. Par la même méthode, nous obtenons également la rationalité (à une puissance de π près) du volume de Masur-Veech des sous-variétés affines arithmétiques de surfaces de translation transverses au feuilletage noyau.

Let S be a connected closed oriented surface of genus g. Given a triangulation (resp. quadrangulation) of S, define the index of each of its vertices to be the number of edges originating from this vertex minus 6 (resp. minus 4). Call the set of integers recording the non-zero indices the profile of the triangulation (resp. quadrangulation). If κ is a profile for triangulations (resp. quadrangulations) of S, for any m >0 , denote by 𝒯(κ,m) (resp. 𝒬(κ,m)) the set of (equivalence classes of) triangulations (resp. quadrangulations) with profile κ which contain at most m triangles (resp. squares). In this paper, we will show that if κ is a profile for triangulations (resp. for quadrangulations) of S such that none of the indices in κ is divisible by 6 (resp. by 4), then 𝒯(κ,m)c 3 (κ)m 2g+|κ|-2 (resp. 𝒬(κ,m)c 4 (κ)m 2g+|κ|-2 ), where c 3 (κ)·(3π) 2g+|κ|-2 and c 4 (κ)·π 2g+|κ|-2 . The key ingredient of the proof is a result of J. Kollár [24] on the link between the curvature of the Hodge metric on vector subbundles of a variation of Hodge structure over algebraic varieties, and Chern classes of their extensions. By the same method, we also obtain the rationality (up to some power of π) of the Masur-Veech volume of arithmetic affine submanifolds of translation surfaces that are transverse to the kernel foliation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.159
Classification : 30F30, 32G15, 52C20
Keywords: Tilings of surfaces, differentials on Riemann surfaces, moduli spaces of flat surfaces, Masur-Veech volume, variation of Hodge structure
Mot clés : Pavages de surfaces, différentielles sur les surfaces de Riemann, espaces de modules de surfaces plates, volume de Masur-Veech, variation de structure de Hodge
Koziarz, Vincent 1 ; Nguyen, Duc-Manh 1

1 Université de Bordeaux, IMB, CNRS, UMR 5251 F-33400 Talence, France
@article{JEP_2021__8__831_0,
     author = {Koziarz, Vincent and Nguyen, Duc-Manh},
     title = {Variation of {Hodge} structure and enumerating tilings of surfaces by triangles~and squares},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {831--857},
     publisher = {Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.159},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.159/}
}
TY  - JOUR
AU  - Koziarz, Vincent
AU  - Nguyen, Duc-Manh
TI  - Variation of Hodge structure and enumerating tilings of surfaces by triangles and squares
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
SP  - 831
EP  - 857
VL  - 8
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.159/
DO  - 10.5802/jep.159
LA  - en
ID  - JEP_2021__8__831_0
ER  - 
%0 Journal Article
%A Koziarz, Vincent
%A Nguyen, Duc-Manh
%T Variation of Hodge structure and enumerating tilings of surfaces by triangles and squares
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 831-857
%V 8
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.159/
%R 10.5802/jep.159
%G en
%F JEP_2021__8__831_0
Koziarz, Vincent; Nguyen, Duc-Manh. Variation of Hodge structure and enumerating tilings of surfaces by triangles and squares. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 831-857. doi : 10.5802/jep.159. http://www.numdam.org/articles/10.5802/jep.159/

[1] Athreya, Jayadev S.; Eskin, Alex; Zorich, Anton Right-angled billiards and volumes of moduli spaces of quadratic differentials on P 1 , Ann. Sci. École Norm. Sup. (4), Volume 49 (2016) no. 6, pp. 1311-1386 (With an appendix by Jon Chaika) | DOI | MR

[2] Avila, Artur; Eskin, Alex; Möller, Martin Symplectic and isometric SL (2,)-invariant subbundles of the Hodge bundle, J. reine angew. Math., Volume 732 (2017), pp. 1-20 | DOI | MR

[3] Bainbridge, Matt; Chen, Dawei; Gendron, Quentin; Grushevsky, Samuel; Möller, Martin Compactification of strata of Abelian differentials, Duke Math. J., Volume 167 (2018) no. 12, pp. 2347-2416 | DOI | MR | Zbl

[4] Bainbridge, Matt; Chen, Dawei; Gendron, Quentin; Grushevsky, Samuel; Möller, Martin Strata of k-differentials, Algebraic Geom., Volume 6 (2019) no. 2, pp. 196-233 | DOI | MR

[5] Bainbridge, Matt; Chen, Dawei; Gendron, Quentin; Grushevsky, Samuel; Möller, Martin The moduli space of multi-scale differentials, 2019 | arXiv

[6] Brunebarbe, Yohan Symmetric differentials and variations of Hodge structures, J. reine angew. Math., Volume 743 (2018), pp. 133-161 | DOI | MR

[7] Chen, Dawei; Möller, Martin; Sauvaget, Adrien Masur-Veech volumes and intersection theory: the principal strata of quadratic differentials, 2019 (with an appendix by G. Borot, A. Giacchetto & D. Lewanski) | arXiv

[8] Costantini, M.; Möller, Martin; Zachhuber, J. The area is a good enough metric, 2019 | arXiv

[9] Deligne, Pierre Équations différentielles à points singuliers réguliers, Lect. Notes in Math., 163, Springer-Verlag, Berlin-New York, 1970 | Zbl

[10] Deligne, Pierre Théorie de Hodge. II, Publ. Math. Inst. Hautes Études Sci. (1971) no. 40, pp. 5-57 | DOI | Numdam

[11] Deligne, Pierre Un théorème de finitude pour la monodromie, Discrete groups in geometry and analysis (New Haven, Conn., 1984) (Progress in Math.), Volume 67, Birkhäuser Boston, Boston, MA, 1987, pp. 1-19 | DOI | Zbl

[12] Engel, Philip Hurwitz theory of elliptic orbifolds, I, Geom. Topol., Volume 25 (2021) no. 1, pp. 229-274 | DOI | MR

[13] Engel, Philip Hurwitz theory of elliptic orbifolds, II, 2018 | arXiv

[14] Engel, Philip; Smillie, Peter The number of convex tilings of the sphere by triangles, squares, or hexagons, Geom. Topol., Volume 22 (2018) no. 5, pp. 2839-2864 | DOI | MR

[15] Eskin, Alex; Mirzakhani, Maryam Invariant and stationary measures for the SL (2,) action on moduli space, Publ. Math. Inst. Hautes Études Sci., Volume 127 (2018), pp. 95-324 | DOI | MR | Zbl

[16] Eskin, Alex; Mirzakhani, Maryam; Mohammadi, Amir Isolation, equidistribution, and orbit closures for the SL (2,) action on moduli space, Ann. of Math. (2), Volume 182 (2015) no. 2, pp. 673-721 | DOI | MR | Zbl

[17] Eskin, Alex; Okounkov, Andrei Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math., Volume 145 (2001) no. 1, pp. 59-103 | DOI | MR | Zbl

[18] Eskin, Alex; Okounkov, Andrei Pillowcases and quasimodular forms, Algebraic geometry and number theory (Progress in Math.), Volume 253, Birkhäuser Boston, Boston, MA, 2006, pp. 1-25 | DOI | MR | Zbl

[19] Esnault, Hélène; Viehweg, Eckart Lectures on vanishing theorems, DMV Seminar, 20, Birkhäuser Verlag, Basel, 1992, vi+164 pages | DOI | MR | Zbl

[20] Filip, Simion Splitting mixed Hodge structures over affine invariant manifolds, Ann. of Math. (2), Volume 183 (2016) no. 2, pp. 681-713 | DOI | MR | Zbl

[21] Goujard, Elise Volumes of strata of moduli spaces of quadratic differentials: getting explicit values, Ann. Inst. Fourier (Grenoble), Volume 66 (2016) no. 6, pp. 2203-2251 http://aif.cedram.org/item?id=AIF_2016__66_6_2203_0 | DOI | Numdam | MR | Zbl

[22] Hartshorne, Robin Algebraic geometry, Graduate Texts in Math., 52, Springer-Verlag, New York-Heidelberg, 1977

[23] Kawamata, Yujiro Characterization of abelian varieties, Compositio Math., Volume 43 (1981) no. 2, pp. 253-276 | Numdam | MR

[24] Kollár, János Subadditivity of the Kodaira dimension: fibers of general type, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 361-398 | DOI | MR

[25] Kontsevich, Maxim; Zorich, Anton Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., Volume 153 (2003) no. 3, pp. 631-678 | DOI | MR

[26] Koziarz, Vincent; Nguyen, Duc-Manh Complex hyperbolic volume and intersection of boundary divisors in moduli spaces of pointed genus zero curves, Ann. Sci. École Norm. Sup. (4), Volume 51 (2018) no. 6, pp. 1549-1597 | DOI | MR | Zbl

[27] Masur, Howard; Tabachnikov, Serge Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015-1089 | DOI | Zbl

[28] McMullen, Curtis T. The Gauss-Bonnet theorem for cone manifolds and volumes of moduli spaces, Amer. J. Math., Volume 139 (2017) no. 1, pp. 261-291 | DOI | MR | Zbl

[29] McMullen, Curtis T.; Mukamel, Ronen E.; Wright, Alex Cubic curves and totally geodesic subvarieties of moduli space, Ann. of Math. (2), Volume 185 (2017) no. 3, pp. 957-990 | DOI | MR | Zbl

[30] Möller, Martin Linear manifolds in the moduli space of one-forms, Duke Math. J., Volume 144 (2008) no. 3, pp. 447-487 | DOI | MR

[31] Nguyen, Duc-Manh Volume form on moduli spaces of d-differentials, 2019 | arXiv

[32] Sauvaget, Adrien Volumes and Siegel-Veech constants of (2G-2) and Hodge integrals, Geom. Funct. Anal., Volume 28 (2018) no. 6, pp. 1756-1779 | DOI | MR

[33] Sauvaget, Adrien Volumes of moduli spaces of flat surfaces, 2018 | arXiv

[34] Schmid, Wilfried Variation of Hodge structure: the singularities of the period mapping, Invent. Math., Volume 22 (1973), pp. 211-319 | DOI | MR

[35] Smillie, John; Weiss, Barak Minimal sets for flows on moduli space, Israel J. Math., Volume 142 (2004), pp. 249-260 | DOI | MR | Zbl

[36] Thurston, William P. Shapes of polyhedra and triangulations of the sphere, The Epstein birthday schrift (Geom. Topol. Monogr.), Volume 1, Geom. Topol. Publ., Coventry, 1998, pp. 511-549 | DOI | MR | Zbl

[37] Torres-Teigell, David Masur-Veech volume of the gothic locus, J. London Math. Soc. (2), Volume 102 (2020) no. 1, pp. 405-436 | DOI | MR

[38] Veech, William A. Moduli spaces of quadratic differentials, J. Analyse Math., Volume 55 (1990), pp. 117-171 | DOI | MR

[39] Wright, Alex The field of definition of affine invariant submanifolds of the moduli space of abelian differentials, Geom. Topol., Volume 18 (2014) no. 3, pp. 1323-1341 | DOI | MR

[40] Zorich, Anton Flat surfaces, Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, pp. 437-583 | DOI | MR

Cité par Sources :