We prove that the group of birational transformations of a del Pezzo fibration of degree over a curve is not simple, by giving a surjective group homomorphism to a free product of infinitely many groups of order . As a consequence we also obtain that the Cremona group of rank is not generated by birational maps preserving a rational fibration. Besides, the subgroup of generated by all connected algebraic subgroups is a proper normal subgroup.
Nous démontrons que le groupe des transformations birationnelles d’une fibration de del Pezzo de degré sur une courbe n’est pas simple, en donnant un homomorphisme de groupes surjectif vers un produit libre d’une infinité de groupes d’ordre . Par conséquent, nous obtenons que le groupe de Cremona de rang n’est pas engendré par les applications birationnelles qui préservent une fibration rationnelles. De plus, le sous-groupe de engendré par tous les sous-groupes algébriques connexes est un sous-groupe distingué propre.
Accepted:
Published online:
Keywords: Del Pezzo fibrations, Cremona group, group homomorphisms, group quotients, birational transformations, genus
Mot clés : Fibrations de del Pezzo, groupe de Cremona, homomorphismes de groupes, quotients de groupes, transformations birationnelles, genre
@article{JEP_2020__7__1089_0, author = {Blanc, J\'er\'emy and Yasinsky, Egor}, title = {Quotients of groups of birational transformations of cubic del {Pezzo} fibrations}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1089--1112}, publisher = {Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.136}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.136/} }
TY - JOUR AU - Blanc, Jérémy AU - Yasinsky, Egor TI - Quotients of groups of birational transformations of cubic del Pezzo fibrations JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 1089 EP - 1112 VL - 7 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.136/ DO - 10.5802/jep.136 LA - en ID - JEP_2020__7__1089_0 ER -
%0 Journal Article %A Blanc, Jérémy %A Yasinsky, Egor %T Quotients of groups of birational transformations of cubic del Pezzo fibrations %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 1089-1112 %V 7 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.136/ %R 10.5802/jep.136 %G en %F JEP_2020__7__1089_0
Blanc, Jérémy; Yasinsky, Egor. Quotients of groups of birational transformations of cubic del Pezzo fibrations. Journal de l’École polytechnique — Mathématiques, Volume 7 (2020), pp. 1089-1112. doi : 10.5802/jep.136. http://www.numdam.org/articles/10.5802/jep.136/
[BB73] On fixed point schemes of actions of multiplicative and additive groups, Topology, Volume 12 (1973), pp. 99-103 | DOI | MR | Zbl
[BCDP19] Birational transformations of threefolds of (un)-bounded genus or gonality, 2019 | arXiv
[BCHM10] Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl
[BF13] Topologies and structures of the Cremona groups, Ann. of Math. (2), Volume 178 (2013) no. 3, pp. 1173-1198 | DOI | MR | Zbl
[BFT19] Connected algebraic groups acting on -dimensional Mori fibrations, 2019 | arXiv
[Bir16] Singularities of linear systems and boundedness of Fano varieties, 2016 | arXiv
[Bir19] Anti-pluricanonical systems on Fano varieties, Ann. of Math. (2), Volume 190 (2019) no. 2, pp. 345-463 | DOI | MR | Zbl
[BLZ19] Quotients of higher dimensional Cremona groups, 2019 Acta Math. (to appear) | arXiv
[Bro06] Topology and groupoids, BookSurge, LLC, Charleston, SC, 2006
[Can13] The Cremona group in two variables, European Congress of Mathematics, European Mathematical Society, Zürich, 2013, pp. 211-225 | MR | Zbl
[Cas01] Le transformazioni generatrici del gruppo Cremoniano nel piano, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., Volume 36 (1901), pp. 861-874 | Zbl
[CL13] Normal subgroups in the Cremona group, Acta Math., Volume 210 (2013) no. 1, pp. 31-94 (With an appendix by Yves de Cornulier) | DOI | MR | Zbl
[DI09] Finite subgroups of the plane Cremona group, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I (Progress in Math.), Volume 269, Birkhäuser Boston, Boston, MA, 2009, pp. 443-548 | DOI | MR | Zbl
[Dés19] The Cremona group and its subgroups, 2019 | arXiv
[Giz82] Defining relations for the Cremona group of the plane, Izv. Akad. Nauk SSSR Ser. Mat., Volume 46 (1982) no. 5, pp. 909-970 English translation in Math. USSR 21 (1983), no. 2, p. 211–268 | MR | Zbl
[Har81] A bound on the geometric genus of projective varieties, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 8 (1981) no. 1, pp. 35-68 | Numdam | MR | Zbl
[HK00] Mori dream spaces and GIT, Michigan Math. J., Volume 48 (2000), pp. 331-348 | DOI | MR | Zbl
[HM13] The Sarkisov program, J. Algebraic Geom., Volume 22 (2013) no. 2, pp. 389-405 | DOI | MR | Zbl
[IKT93] Relations in a two-dimensional Cremona group over a perfect field, Izv. Ross. Akad. Nauk Ser. Mat., Volume 57 (1993) no. 3, pp. 3-69 English transl. in Russian Acad. Sci. Izv. Math. 42 (1994), no. 3, p. 427–478 | DOI | Zbl
[Isk96] Factorization of birational mappings of rational surfaces from the point of view of Mori theory, Uspehi Mat. Nauk, Volume 51 (1996) no. 4(310), pp. 3-72 English transl. in Russian Math. Surveys 51 (1996), no. 4, p. 585–652 | DOI | MR | Zbl
[Kal13] Relations in the Sarkisov program, Compositio Math., Volume 149 (2013) no. 10, pp. 1685-1709 | DOI | MR | Zbl
[Kaw92] Boundedness of -Fano threefolds, Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989) (Contemp. Math.), Volume 131, American Mathematical Society, Providence, RI, 1992, pp. 439-445 | MR | Zbl
[KKL16] Finite generation and geography of models, Minimal models and extremal rays (Kyoto, 2011) (Adv. Stud. Pure Math.), Volume 70, Math. Soc. Japan, Tokyo, 2016, pp. 215-245 | DOI | MR | Zbl
[KM98] Birational geometry of algebraic varieties, Cambridge Tracts in Math., 134, Cambridge University Press, Cambridge, 1998 | DOI | MR | Zbl
[KMMT00] Boundedness of canonical -Fano 3-folds, Proc. Japan Acad. Ser. A Math. Sci., Volume 76 (2000) no. 5, pp. 73-77 http://projecteuclid.org/euclid.pja/1148393517 | DOI | MR | Zbl
[Kol96] Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), 32, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl
[Kra18] Regularization of rational group actions, 2018 | arXiv
[Lon16] Non simplicité du groupe de Cremona sur tout corps, Ann. Inst. Fourier (Grenoble), Volume 66 (2016) no. 5, pp. 2021-2046 http://aif.cedram.org/item?id=AIF_2016__66_5_2021_0 | DOI | Numdam | MR | Zbl
[LZ17] Signature morphisms from the Cremona group over a non-closed field, 2017 J. Eur. Math. Soc. (JEMS) (to appear) | arXiv
[Mat58] Polarized varieties, fields of moduli and generalized Kummer varieties of polarized abelian varieties, Amer. J. Math., Volume 80 (1958), pp. 45-82 | DOI | MR | Zbl
[Mat63] On algebraic groups of birational transformations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), Volume 34 (1963), pp. 151-155 | MR | Zbl
[Sch19] Relations in the Cremona group over perfect fields, 2019 | arXiv
[Sob02] Birational automorphisms of a class of varieties fibered by cubic surfaces, Izv. Ross. Akad. Nauk Ser. Mat., Volume 66 (2002) no. 1, pp. 203-224 | DOI | MR | Zbl
[UZ19] A new presentation of the plane Cremona group, Proc. Amer. Math. Soc., Volume 147 (2019) no. 7, pp. 2741-2755 | DOI | MR | Zbl
[Wei55] On algebraic groups of transformations, Amer. J. Math., Volume 77 (1955), pp. 355-391 | DOI | MR | Zbl
[Zim18] The Abelianization of the real Cremona group, Duke Math. J., Volume 167 (2018) no. 2, pp. 211-267 | DOI | MR | Zbl
Cited by Sources: