[Une borne de Berry–Esseen d’ordre pour les martingales]
Renz [13] has established a rate of convergence in the central limit theorem for martingales with some restrictive conditions. In the present paper a modification of the methods, developed by Bolthausen [2] and Grama and Haeusler [6], is applied for obtaining the same convergence rate for a class of more general martingales. An application to linear processes is discussed.
Renz [13] a établi un taux de convergence dans le théorème de la limite centrale pour les martingales avec certaines conditions restrictives. Dans le présent article, une modification des méthodes, développées par Bolthausen [2] et Grama et Haeusler [6], est appliquée pour obtenir le même taux de convergence pour une classe de martingales plus générales. Une application aux processus linéaires est discutée.
Accepté le :
Publié le :
Wu, Songqi 1 ; Ma, Xiaohui 1 ; Sang, Hailin 2 ; Fan, Xiequan 1
CC-BY 4.0
@article{CRMATH_2020__358_6_701_0,
author = {Wu, Songqi and Ma, Xiaohui and Sang, Hailin and Fan, Xiequan},
title = {A {Berry{\textendash}Esseen} bound of order $\protect \frac{1}{\protect \sqrt{n}} $ for martingales},
journal = {Comptes Rendus. Math\'ematique},
pages = {701--712},
year = {2020},
publisher = {Acad\'emie des sciences, Paris},
volume = {358},
number = {6},
doi = {10.5802/crmath.81},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.81/}
}
TY - JOUR
AU - Wu, Songqi
AU - Ma, Xiaohui
AU - Sang, Hailin
AU - Fan, Xiequan
TI - A Berry–Esseen bound of order $\protect \frac{1}{\protect \sqrt{n}} $ for martingales
JO - Comptes Rendus. Mathématique
PY - 2020
SP - 701
EP - 712
VL - 358
IS - 6
PB - Académie des sciences, Paris
UR - https://www.numdam.org/articles/10.5802/crmath.81/
DO - 10.5802/crmath.81
LA - en
ID - CRMATH_2020__358_6_701_0
ER -
%0 Journal Article
%A Wu, Songqi
%A Ma, Xiaohui
%A Sang, Hailin
%A Fan, Xiequan
%T A Berry–Esseen bound of order $\protect \frac{1}{\protect \sqrt{n}} $ for martingales
%J Comptes Rendus. Mathématique
%D 2020
%P 701-712
%V 358
%N 6
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.81/
%R 10.5802/crmath.81
%G en
%F CRMATH_2020__358_6_701_0
Wu, Songqi; Ma, Xiaohui; Sang, Hailin; Fan, Xiequan. A Berry–Esseen bound of order $\protect \frac{1}{\protect \sqrt{n}} $ for martingales. Comptes Rendus. Mathématique, Tome 358 (2020) no. 6, pp. 701-712. doi: 10.5802/crmath.81
[1] Cramer type moderate deviations for random fields, J. Appl. Probab., Volume 56 (2019) no. 1, pp. 223-245 | Zbl | MR | DOI
[2] Exact convergence rates in some martingale central limit theorems, Ann. Probab., Volume 10 (1982), pp. 672-688 | Zbl | MR | DOI
[3] Exact convergence rates in the central limit theorem for a class of martingales, Bernoulli, Volume 13 (2007) no. 4, pp. 981-999 | Zbl | MR | DOI
[4] Exact rates of convergence in some martingale central limit theorems, J. Math. Anal. Appl., Volume 469 (2019) no. 2, pp. 1028-1044 | MR | Zbl
[5] A local limit theorem for linear random fields (2020) (https://arxiv.org/abs/2007.05036, submitted)
[6] Large deviations for martingales via Cramér’s method, Stochastic Processes Appl., Volume 85 (2000) no. 2, pp. 279-293 | DOI | Zbl
[7] An introduction to long-memory time series models and fractional differencing, J. Time Ser. Anal., Volume 1 (1980), pp. 15-29 | Zbl | MR | DOI
[8] Martingale limit theory and its applications, Probability and Mathematical Statistics, Academic Press Inc., 1980 | Zbl
[9] Fractional differencing, Biometrika, Volume 68 (1981), pp. 165-176 | MR | DOI | Zbl
[10] Estimates for the rate of convergence in the central limit theorem for martingales, Theory Probab. Appl., Volume 36 (1991) no. 2, pp. 289-302 | MR | DOI | Zbl
[11] On the rate of convergence in the martingale central limit theorem, Bernoulli, Volume 19 (2013) no. 2, pp. 633-645 | DOI | MR | Zbl
[12] On the rate of convergence in the central limit theorem for martingale difference sequences, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 41 (2005) no. 1, pp. 35-43 | Numdam | MR | DOI | Zbl
[13] A note on exact convergence rates in some martingale central limit theorems, Ann. Probab., Volume 24 (1996) no. 3, pp. 1616-1637 | Zbl | MR | DOI
[14] On linear processes with dependent innovations, Stochastic Processes Appl., Volume 115 (2005) no. 6, pp. 939-958 | MR | DOI | Zbl
Cité par Sources :





