Number theory, Representation theory
Duality for K-analytic Group Cohomology of p-adic Lie Groups
Comptes Rendus. Mathématique, Volume 360 (2022) no. G11, pp. 1213-1226.

We prove a duality result for the analytic cohomology of Lie groups over non-archimedean fields acting on locally convex vector spaces by combining Tamme’s non-archimedean van Est comparison morphism with Hazewinkel’s duality result for Lie algebra cohomology.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.373
Classification: 22E50, 46S10, 11S31
Keywords: analytic cohomology, duality
Thomas, Oliver 1

1 Department of Mathematics, University of Bahrain, P.O. Box 32038, Sukhair, Bahrain
@article{CRMATH_2022__360_G11_1213_0,
     author = {Thomas, Oliver},
     title = {Duality for $K$-analytic {Group} {Cohomology} of $p$-adic {Lie} {Groups}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1213--1226},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G11},
     year = {2022},
     doi = {10.5802/crmath.373},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.373/}
}
TY  - JOUR
AU  - Thomas, Oliver
TI  - Duality for $K$-analytic Group Cohomology of $p$-adic Lie Groups
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1213
EP  - 1226
VL  - 360
IS  - G11
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.373/
DO  - 10.5802/crmath.373
LA  - en
ID  - CRMATH_2022__360_G11_1213_0
ER  - 
%0 Journal Article
%A Thomas, Oliver
%T Duality for $K$-analytic Group Cohomology of $p$-adic Lie Groups
%J Comptes Rendus. Mathématique
%D 2022
%P 1213-1226
%V 360
%N G11
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.373/
%R 10.5802/crmath.373
%G en
%F CRMATH_2022__360_G11_1213_0
Thomas, Oliver. Duality for $K$-analytic Group Cohomology of $p$-adic Lie Groups. Comptes Rendus. Mathématique, Volume 360 (2022) no. G11, pp. 1213-1226. doi : 10.5802/crmath.373. http://www.numdam.org/articles/10.5802/crmath.373/

[1] Berger, Laurent Multivariable (φ,Γ)-modules and locally analytic vectors, Duke Math. J., Volume 165 (2016) no. 18, pp. 3567-3595 | DOI | MR

[2] Bourbaki, Nicolas Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), Actualités Scientifiques et Industrielles, 1333, Hermann, 1967, 97 pages | MR

[3] Bourbaki, Nicolas Elements of Mathematics. Lie groups and Lie algebras. Chapters 1–3, Springer, 1989, xviii+450 pages (Translated from the French, Reprint of the 1975 edition) | MR

[4] Bourbaki, Nicolas Elements of Mathematics.Algebra I. Chapters 1–3, Springer, 1998, xxiv+709 pages (Translated from the French, Reprint of the 1989 English translation) | MR

[5] Crew, Richard Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve, Ann. Sci. Éc. Norm. Supér., Volume 31 (1998) no. 6, pp. 717-763 | DOI | Numdam | MR | Zbl

[6] Emerton, Matthew Locally analytic vectors in representations of locally p-adic analytic groups, Mem. Am. Math. Soc., Volume 248 (2017) no. 1175, p. iv+158 | DOI | MR | Zbl

[7] Hazevinkelʼ, Mihil A duality theorem for cohomology of Lie algebras, Mat. Sb., N. Ser., Volume 83 (125) (1970), pp. 639-644 | MR

[8] Kupferer, Benjamin; Venjakob, Otmar Herr-complexes in the Lubin–Tate setting, Mathematika, Volume 68 (2022) no. 1, pp. 74-147 | DOI | MR

[9] Féaux de Lacroix, Christian Tobias Einige Resultate über die topologischen Darstellungen p-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem p-adischen Körper, Schriftenreihe des Mathematischen Instituts der Universität Münster. 3. Serie, 23, Univ. Münster, Mathematisches Institut, 1999, x+111 pages | MR

[10] Lazard, Michel Groupes analytiques p-adiques, Publ. Math., Inst. Hautes Étud. Sci. (1965) no. 26, pp. 389-603 | Numdam | MR | Zbl

[11] Perez-Garcia, Cristina; Schikhof, Wilhelmus H. Locally convex spaces over non-Archimedean valued fields, Cambridge Studies in Advanced Mathematics, 119, Cambridge University Press, 2010, xiv+472 pages | DOI | MR

[12] Schneider, Peter Nonarchimedean functional analysis, Springer Monographs in Mathematics, Springer, 2002, vi+156 pages | DOI | MR

[13] Serre, Jean-Pierre Lie algebras and Lie groups, Lecture Notes in Mathematics, 1500, Springer, 1992, viii+168 pages (1964 lectures given at Harvard University) | DOI | MR

[14] Tamme, Georg On an analytic version of Lazard’s isomorphism, Algebra Number Theory, Volume 9 (2015) no. 4, pp. 937-956 | DOI | MR | Zbl

[15] Thomas, Oliver On Analytic and Iwasawa Cohomology, Ph. D. Thesis, Ruprecht Karl University of Heidelberg (2019) | DOI

[16] Thomas, Oliver Cohomology of Topologised Monoids, Math. Z., Volume 301 (2022), pp. 2793-2840 | DOI | MR | Zbl

Cited by Sources: