Probability theory
Exponential inequalities for the supremum of some counting processes and their square martingales
Comptes Rendus. Mathématique, Volume 359 (2021) no. 8, pp. 969-982.

We establish exponential inequalities for the supremum of martingales and square martingales obtained from counting processes, as well as for the oscillation modulus of these processes. Our inequalities, that play a decisive role in the control of errors in statistical procedures, apply to general non-explosive counting processes including Poisson, Hawkes and Cox models. Some applications for U-statistics are discussed.

Nous établissons ici des inégalités exponentielles pour le supremum de martingales et de martingales carrées issues de processus de comptage, ainsi que pour le processus d’oscillation de ces processus. Ces inégalités, qui jouent un rôle essentiel dans le contrôle d’erreur de certaines procédures statistiques, s’appliquent à des processus de comptage non-explosifs généraux, comme les processus de Poisson, de Hawkes ou encore les processsus de Cox. Quelques applications aux U-statistiques sont aussi abordées dans cet article.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.206
Classification: 60G55
Le Guével, Ronan 1

1 Université Rennes 2, France.
@article{CRMATH_2021__359_8_969_0,
     author = {Le Gu\'evel, Ronan},
     title = {Exponential inequalities for the supremum of some counting processes and their square martingales},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {969--982},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {8},
     year = {2021},
     doi = {10.5802/crmath.206},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.206/}
}
TY  - JOUR
AU  - Le Guével, Ronan
TI  - Exponential inequalities for the supremum of some counting processes and their square martingales
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 969
EP  - 982
VL  - 359
IS  - 8
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.206/
DO  - 10.5802/crmath.206
LA  - en
ID  - CRMATH_2021__359_8_969_0
ER  - 
%0 Journal Article
%A Le Guével, Ronan
%T Exponential inequalities for the supremum of some counting processes and their square martingales
%J Comptes Rendus. Mathématique
%D 2021
%P 969-982
%V 359
%N 8
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.206/
%R 10.5802/crmath.206
%G en
%F CRMATH_2021__359_8_969_0
Le Guével, Ronan. Exponential inequalities for the supremum of some counting processes and their square martingales. Comptes Rendus. Mathématique, Volume 359 (2021) no. 8, pp. 969-982. doi : 10.5802/crmath.206. http://www.numdam.org/articles/10.5802/crmath.206/

[1] Arcones, Miguel A.; Giné, Evarist Limit theorems for U-processes, Ann. Probab., Volume 21 (1993) no. 3, pp. 1494-1542 | MR | Zbl

[2] Bass, Richard F. The measurability of hitting times, Electron. Commun. Probab., Volume 15 (2010), pp. 99-105 | DOI | MR | Zbl

[3] Bass, Richard F. Stochastic processes, Cambridge Series in Statistical and Probabilistic Mathematics, 33, Cambridge University Press, 2011 | Zbl

[4] Bercu, Bernard; Delyon, Bernard; Rio, Emmanuel Concentration Inequalities for Sums and Martingales, SpringerBriefs in Mathematics, Springer, 2015 | Zbl

[5] Brémaud, Pierre Point processes and queues: martingale dynamics, Springer Series in Statistics, Springer, 1981 | Zbl

[6] Brémaud, Pierre; Massoulié, Laurent Stability of nonlinear Hawkes processes, Ann. Probab., Volume 24 (1996) no. 3, pp. 1563-1588 | MR | Zbl

[7] Bretagnolle, Jean A new large deviation inequality for U-statistics of order 2, ESAIM, Probab. Stat., Volume 3 (1999), pp. 151-162 | DOI | Numdam | MR | Zbl

[8] Fromont, Magalie; Laurent, Béatrice Adaptive goodness-of-fit tests in a density model, Ann. Stat., Volume 34 (2006) no. 2, pp. 680-720 | MR | Zbl

[9] Fromont, Magalie; Laurent, Béatrice; Reynaud-Bouret, Patricia Adaptive test of homogeneity for a Poisson process, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 47 (2011) no. 1, pp. 176-213 | Numdam | MR | Zbl

[10] Giné, Evarist; Latała, Rafał; Zinn, Joel Exponential and Moment Inequalities for U-Statistics, High Dimensional Probability II. 2nd international conference, Univ. of Washington, DC, USA, August 1-6, 1999 (Progress in Probability), Volume 47, Birkhäuser, 2000, pp. 13-88 | MR | Zbl

[11] Giné, Evarist; Zinn, Joel On Hoffmann–Jorgensen’s Inequality for U-Processes, Probability in Banach Spaces, 8. Proceedings of the Eighth International Conference, held at Bowdoin College in summer of 1991 (Progress in Probability), Volume 30, Birkhäuser, 1992, pp. 80-91 | Zbl

[12] Hanson, David L.; Wright, F. T. A bound on tail probabilities for quadratic forms in independent random variables, Ann. Math. Stat., Volume 42 (1971) no. 3, pp. 1079-1083 | DOI | MR | Zbl

[13] Hoeffding, Wassily Probability Inequalities for Sums of Bounded Random Variables, J. Am. Stat. Assoc., Volume 58 (1963) no. 301, pp. 13-30 | DOI | MR | Zbl

[14] Houdré, Christian; Reynaud-Bouret, Patricia Exponential Inequalities for U-Statistics of Order Two with Constants, Stochastic Inequalities and Applications. Selected papers presented at the Euroconference on “Stochastic inequalities and their applications”, Barcelona, June 18–22, 2002 (Giné, Evariste ad others, ed.) (Progress in Probability), Volume 56, Birkhäuser, 2003, pp. 55-69 | Zbl

[15] Kallenberg, Olav Foundations of Modern Probability, Probability and Its Applications, Springer, 1997 | Zbl

[16] Klass, Michael J.; Nowicki, Krzysztof Order of magnitude bounds for expectations of Δ 2 functions of nonnegative random bilinear forms and generalized U-statistics, Ann. Probab., Volume 25 (1997), pp. 1471-1501 | MR | Zbl

[17] Laurent, Béatrice Adaptive estimation of a quadratic functional of a density by model selection, ESAIM, Probab. Stat., Volume 9 (2005), pp. 1-18 | DOI | Numdam | MR | Zbl

[18] Ledoux, Michel On Talagrand’s deviation inequalities for product measures, ESAIM, Probab. Stat., Volume 1 (1997), pp. 63-87 | DOI | Numdam | MR | Zbl

[19] Massart, Pascal About the constants in Talagrand’s concentration inequalities for empirical processes, Ann. Probab., Volume 28 (2000) no. 2, pp. 863-884 | MR | Zbl

[20] Massart, Pascal Concentration Inequalities and Model Selection: École d’Été de Probabilités de Saint-Flour XXXIII - 2003, Lecture Notes in Mathematics, 1896, Springer, 2007, pp. 147-181 | Zbl

[21] Protter, Philip E. Stochastic differential equations, Stochastic integration and differential equations, Volume 21, Springer, 2005, pp. 243-355 | DOI | MR

[22] Reynaud-Bouret, Patricia Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities, Probab. Theory Relat. Fields, Volume 126 (2003) no. 1, pp. 103-153 | DOI | MR | Zbl

[23] Reynaud-Bouret, Patricia Compensator and exponential inequalities for some suprema of counting processes, Stat. Probab. Lett., Volume 76 (2006) no. 14, pp. 1514-1521 | DOI | MR | Zbl

[24] Sokol, Alexander; Hansen, Niels Exponential Martingales and Changes of Measure for Counting Processes, Stochastic Anal. Appl., Volume 33 (2012) no. 5, pp. 823-843 | DOI | MR | Zbl

[25] Talagrand, Michel New concentration inequalities in product spaces, Invent. Math., Volume 126 (1996) no. 3, pp. 505-563 | DOI | MR | Zbl

[26] Van De Geer, Sara Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes, Ann. Stat., Volume 23 (1995) no. 5, pp. 1779-1801 | MR | Zbl

Cited by Sources: