Number theory
Effective André–Oort for non-compact curves in Hilbert modular varieties
Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 313-321.

In the proofs of most cases of the André–Oort conjecture, there are two different steps whose effectivity is unclear: the use of generalizations of Brauer–Siegel and the use of Pila–Wilkie. Only the case of curves in 2 is currently known effectively (by other methods).

We give an effective proof of André–Oort for non-compact curves in every Hilbert modular surface and every Hilbert modular variety of odd genus (under a minor generic simplicity condition). In particular we show that in these cases the first step may be replaced by the endomorphism estimates of Wüstholz and the second author together with the specialization method of André via G-functions, and the second step may be effectivized using the Q-functions of Novikov, Yakovenko and the first author.

Dans les démonstrations de la plupart des cas de la conjecture de André–Oort, il y a deux étapes différentes dont l’effectivité n’est pas claire : l’utilisation de généralisations de Brauer–Siegel et l’utilisation de Pila–Wilkie. Seulement le cas des courbes dans 2 est couramment effectivement connu (par des autres méthodes).

Nous donnons une démonstration effective de la conjecture pour les courbes non-compactes dans chaque surface modulaire de Hilbert et chaque variété modulaire de Hilbert de genre impair (sous condition secondaire de simplicité générique). En particulier nous montrons que dans ces cas, la première étape peut e ^tre remplacée par les majorations d’endomorphismes de Wüstholz et le deuxième auteur combinées avec la méthode de spécialisation de André par les G-fonctions, et la deuxième étape peut e ^tre effectivisée en utilisant les Q-fonctions de Novikov, Yakovenko et le premier auteur.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.177
Classification: 11G10, 11G15, 11G18, 11G50
Binyamini, Gal 1; Masser, David 2

1 Weizmann Institute of Science, Rehovot, Israel
2 Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, 4051 Basel, Switzerland
@article{CRMATH_2021__359_3_313_0,
     author = {Binyamini, Gal and Masser, David},
     title = {Effective {Andr\'e{\textendash}Oort} for non-compact curves in {Hilbert} modular varieties},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {313--321},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {3},
     year = {2021},
     doi = {10.5802/crmath.177},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.177/}
}
TY  - JOUR
AU  - Binyamini, Gal
AU  - Masser, David
TI  - Effective André–Oort for non-compact curves in Hilbert modular varieties
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 313
EP  - 321
VL  - 359
IS  - 3
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.177/
DO  - 10.5802/crmath.177
LA  - en
ID  - CRMATH_2021__359_3_313_0
ER  - 
%0 Journal Article
%A Binyamini, Gal
%A Masser, David
%T Effective André–Oort for non-compact curves in Hilbert modular varieties
%J Comptes Rendus. Mathématique
%D 2021
%P 313-321
%V 359
%N 3
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.177/
%R 10.5802/crmath.177
%G en
%F CRMATH_2021__359_3_313_0
Binyamini, Gal; Masser, David. Effective André–Oort for non-compact curves in Hilbert modular varieties. Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 313-321. doi : 10.5802/crmath.177. http://www.numdam.org/articles/10.5802/crmath.177/

[1] André, Yves G-functions and geometry, Aspects of Mathematics, 13, Vieweg & Sohn, 1989 | Zbl

[2] André, Yves Finitude des couples d’invariants modulaires singuliers sur une courbe algébrique plane non modulaire, J. Reine Angew. Math., Volume 505 (1998), pp. 203-208 | DOI | Zbl

[3] Bilu, Yuri; Kühne, Lars Linear equations in singular moduli, Int. Math. Res. Not., Volume 2020 (2020) no. 21, pp. 7617-7643 | DOI | MR | Zbl

[4] Bilu, Yuri; Masser, David; Zannier, Umberto An effective ‘Theorem of André’ for CM-points on a plane curve, Math. Proc. Camb. Philos. Soc., Volume 154 (2013) no. 1, pp. 145-152 | DOI | Zbl

[5] Binyamini, Gal Density of algebraic points on Noetherian varieties, Geom. Funct. Anal., Volume 29 (2019) no. 1, pp. 72-118 | DOI | MR | Zbl

[6] Binyamini, Gal Some effective estimates for André–Oort in Y(1) n , J. Reine Angew. Math., Volume 767 (2020), pp. 17-35 (with appendix by E. Kowalski) | DOI | MR | Zbl

[7] Binyamini, Gal; Novikov, Dmitry; Yakovenko, Sergei On the number of zeros of Abelian integrals. A constructive solution of the infinitesimal Hilbert sixteenth problem, Invent. Math., Volume 181 (2010) no. 2, pp. 227-289 | DOI | Zbl

[8] Binyamini, Gal; Novikov, Dmitry; Yakovenko, Sergei Quasialgebraic functions, Algebraic methods in dynamical systems (Banach Center Publications), Volume 94, Polish Academy of Sciences, 2011, pp. 61-81 | MR | Zbl

[9] Bombieri, Enrico; Pila, Jonathan The number of integral points on arcs and ovals, Duke Math. J., Volume 59 (1989) no. 2, pp. 337-357 | MR | Zbl

[10] Daw, Christopher; Orr, Martin Quantitative reduction theory and unlikely intersections (2019) (https://arxiv.org/abs/1911.05618)

[11] Daw, Christopher; Orr, Martin Unlikely intersections with E×CM curves in 𝒜 2 (2019) (https://arxiv.org/abs/1902.10483)

[12] Fröhlich, Albrecht; Shepherdson, John C. Effective procedures in field theory, Philos. Trans. Roy. Soc. London, Volume 248 (1956), pp. 407-432 | MR | Zbl

[13] Jones, Gareth; Thomas, Margaret E. M. Effective Pila–Wilkie bounds for unrestricted Pfaffian surfaces (2018) (https://arxiv.org/abs/1804.08232, to appear in Math. Ann.)

[14] Kühne, Lars An effective result of André–Oort type, Ann. Math., Volume 176 (2012) no. 1, pp. 651-671 | DOI | Zbl

[15] Kühne, Lars Logarithms of algebraic numbers, J. Théor. Nombres Bordeaux, Volume 27 (2015) no. 2, pp. 499-535 | DOI | Numdam | MR | Zbl

[16] Masser, David Specializations of some hyperelliptic Jacobians, Number theory in progress, Walter de Gruyter, 1999, pp. 293-307 | Zbl

[17] Masser, David; Wüstholz, Gisbert Endomorphism estimates for abelian varieties, Math. Z., Volume 215 (1994) no. 4, pp. 641-653 | DOI | MR | Zbl

[18] Mestre, Jean-François Families of hyperelliptic curves with real multiplication, Arithmetic algebraic geometry (Progress in Mathematics), Volume 89, Birkhäuser, 1991, pp. 193-208 | DOI

[19] Peterzil, Ya’acov; Starchenko, Sergei Definability of restricted theta functions and families of abelian varieties, Duke Math. J., Volume 162 (2013) no. 4, pp. 731-765 | MR | Zbl

[20] Pila, Jonathan On the algebraic points of a definable set, Sel. Math., New Ser., Volume 15 (2009) no. 1, pp. 151-170 | DOI | MR | Zbl

[21] Pila, Jonathan O-minimality and the André–Oort conjecture for n , Ann. Math., Volume 173 (2011) no. 3, pp. 1779-1840 | DOI | Zbl

[22] Pila, Jonathan; Tsimerman, Jacob The André–Oort conjecture for the moduli space of abelian surfaces, Compos. Math., Volume 149 (2013) no. 2, pp. 204-216 | DOI | Zbl

[23] Pila, Jonathan; Wilkie, Alex The rational points of a definable set, Duke Math. J., Volume 133 (2006) no. 3, pp. 591-616 | MR | Zbl

[24] Pila, Jonathan; Zannier, Umberto Rational points in periodic analytic sets and the Manin–Mumford conjecture, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 19 (2008) no. 2, pp. 149-162 | DOI | MR | Zbl

[25] Tsimerman, Jacob Brauer–Siegel for arithmetic tori and lower bounds for Galois orbits of special points, J. Am. Math. Soc., Volume 25 (2012) no. 4, pp. 1091-1117 | DOI | MR | Zbl

[26] Tsimerman, Jacob The André–Oort conjecture for 𝒜 g , Ann. Math., Volume 187 (2015) no. 2, pp. 379-390 | DOI | MR | Zbl

[27] Wilson, John Explicit moduli for curves of genus 2 with real multiplication by (5), Acta Arith., Volume 93 (2000) no. 2, pp. 121-138 | DOI | MR | Zbl

Cited by Sources: