Let be a smooth complex projective curve, and let be a vector bundle on which is not semistable. For a suitably chosen integer , let be the Grassmann bundle over that parametrizes the quotients of the fibers of of dimension . Assuming some numerical conditions on the Harder–Narasimhan filtration of , we study Seshadri constants of ample line bundles on . In many cases, we give the precise values of the Seshadri constants. Our results generalize various known results for the special case of . We include some examples in rank .
Soient une courbe projective complexe lisse et un fibré vectoriel sur , supposé non semi-stable. Pour un entier bien choisi, considérons le fibré de Grassman au-dessus de qui paramètre les quotients de dimension des fibrés de . Sous des hypothèses numériques sur la filtration de Harder–Narasimhan de , nous étudions les constantes de Seshadri des fibrés amples au-dessus de . Dans de nombreux cas, nous obtenons les valeurs explicites des constantes de Seshadri. Nos résultats généralisent plusieurs résultats connus dans le cas particulier où . Nous présentons des exemples en rang .
Revised:
Accepted:
Published online:
Keywords: Seshadri constant, Harder–Narasimhan filtration, Grassmann bundle, nef cone, pseudo-effective cone
Mot clés : Constante de Seshadri, filtration de Harder–Narasimhan, fibré de Grassman, cône nef, cône pseudo-effectif
@article{AIF_2020__70_4_1477_0, author = {Biswas, Indranil and Hanumanthu, Krishna and Nagaraj, Donihakkalu Shankar and Newstead, Peter E.}, title = {Seshadri constants and {Grassmann} bundles over curves}, journal = {Annales de l'Institut Fourier}, pages = {1477--1496}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {4}, year = {2020}, doi = {10.5802/aif.3370}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3370/} }
TY - JOUR AU - Biswas, Indranil AU - Hanumanthu, Krishna AU - Nagaraj, Donihakkalu Shankar AU - Newstead, Peter E. TI - Seshadri constants and Grassmann bundles over curves JO - Annales de l'Institut Fourier PY - 2020 SP - 1477 EP - 1496 VL - 70 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3370/ DO - 10.5802/aif.3370 LA - en ID - AIF_2020__70_4_1477_0 ER -
%0 Journal Article %A Biswas, Indranil %A Hanumanthu, Krishna %A Nagaraj, Donihakkalu Shankar %A Newstead, Peter E. %T Seshadri constants and Grassmann bundles over curves %J Annales de l'Institut Fourier %D 2020 %P 1477-1496 %V 70 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3370/ %R 10.5802/aif.3370 %G en %F AIF_2020__70_4_1477_0
Biswas, Indranil; Hanumanthu, Krishna; Nagaraj, Donihakkalu Shankar; Newstead, Peter E. Seshadri constants and Grassmann bundles over curves. Annales de l'Institut Fourier, Volume 70 (2020) no. 4, pp. 1477-1496. doi : 10.5802/aif.3370. http://www.numdam.org/articles/10.5802/aif.3370/
[1] Seshadri constants and periods of polarized abelian varieties, Math. Ann., Volume 312 (1998) no. 4, pp. 607-623 (with an appendix by the author and Tomasz Szemberg) | DOI | MR | Zbl
[2] A primer on Seshadri constants, Interactions of classical and numerical algebraic geometry (Contemporary Mathematics), Volume 496, American Mathematical Society, 2009, pp. 33-70 | DOI | MR | Zbl
[3] Applications of the Ein–Lazarsfeld criterion for spannedness of adjoint bundles, Math. Z., Volume 214 (1993) no. 4, pp. 593-599 | DOI | MR | Zbl
[4] Pseudo-effective cone of Grassmann bundles over a curve, Geom. Dedicata, Volume 172 (2014), pp. 69-77 | DOI | MR | Zbl
[5] Nef cone of flag bundles over a curve, Kyoto J. Math., Volume 54 (2014) no. 2, pp. 353-366 | DOI | MR | Zbl
[6] Semistability and finite maps, Arch. Math., Volume 93 (2009) no. 5, pp. 437-443 | DOI | MR | Zbl
[7] Seshadri constants on smooth threefolds, Adv. Geom., Volume 14 (2014) no. 1, pp. 59-79 | DOI | MR | Zbl
[8] Seshadri constants of abelian varieties, The Fano Conference, Università di Torino, 2004, pp. 379-394 | MR | Zbl
[9] Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) (Lecture Notes in Mathematics), Volume 1507, Springer, 1992, pp. 87-104 | DOI | MR | Zbl
[10] Local positivity of ample line bundles, J. Differ. Geom., Volume 42 (1995) no. 2, pp. 193-219 | DOI | MR | Zbl
[11] Seshadri constants on smooth surfaces, Journées de Géométrie Algébrique d’Orsay (Orsay, 1992) (Astérisque), Société Mathématique de France, 1993 no. 218, pp. 177-186 | Numdam | MR | Zbl
[12] Seshadri constants on ruled surfaces: the rational and the elliptic cases, Manuscr. Math., Volume 119 (2006) no. 4, pp. 483-505 | DOI | MR | Zbl
[13] Remarks on Seshadri constants of vector bundles, Ann. Inst. Fourier, Volume 50 (2000) no. 3, pp. 767-780 | DOI | Numdam | MR | Zbl
[14] Multi-point Seshadri constants on ruled surfaces, Proc. Am. Math. Soc., Volume 145 (2017) no. 12, pp. 5145-5155 | DOI | MR | Zbl
[15] Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, 156, Springer, 1970, xiv+256 pages (notes written in collaboration with C. Musili) | MR | Zbl
[16] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR | Zbl
[17] Okounkov bodies and Seshadri constants, Adv. Math., Volume 241 (2013), pp. 246-262 | DOI | MR | Zbl
[18] Seshadri constants via toric degenerations, J. Reine Angew. Math., Volume 695 (2014), pp. 151-174 | DOI | MR | Zbl
[19] Lengths of periods and Seshadri constants of abelian varieties, Math. Res. Lett., Volume 3 (1996) no. 4, pp. 439-447 | DOI | MR | Zbl
[20] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, Springer, 2004, xviii+387 pages | DOI | MR | Zbl
[21] Seshadri constants and Fano manifolds, Math. Z., Volume 245 (2003) no. 4, pp. 645-656 | DOI | MR | Zbl
[22] Seshadri constants on abelian varieties, Am. J. Math., Volume 118 (1996) no. 3, pp. 621-635 | DOI | MR | Zbl
[23] Seshadri constants in a family of surfaces, Math. Ann., Volume 323 (2002) no. 4, pp. 625-631 | DOI | MR | Zbl
[24] Seshadri constants and geometry of surfaces, Ph. D. Thesis, University of Duisburg-Essen (Germany) (2005) | Zbl
Cited by Sources: