Starting from the work of Bhupal we extend to the contact case the Viterbo capacity and Traynor’s construction of symplectic homology. As an application we get a new proof of the Non-Squeezing Theorem of Eliashberg, Kim and Polterovich.
Inspirés par le travail de Bhupal, nous étendons à la géométrie de contact la notion de capacité de Viterbo ainsi que la construction, dûe à Traynor, d’homologie symplectique. Comme application, nous obtenons une démonstration alternative du Théorème de Non-Tassement d’Eliashberg, Kim et Polterovitch.
Keywords: Contact non-squeezing, contact capacity, contact homology, orderability of contact manifolds, generating functions
Mot clés : non tassement de contact, capacité de contact, homologie de contact, ordonnabilité des varitétés de contact, fonctions génératrices
@article{AIF_2011__61_1_145_0, author = {Sandon, Sheila}, title = {Contact {Homology,} {Capacity} and {Non-Squeezing} in $\mathbb{R}^{2n}\times S^{1}$ via {Generating} {Functions}}, journal = {Annales de l'Institut Fourier}, pages = {145--185}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {1}, year = {2011}, doi = {10.5802/aif.2600}, zbl = {1222.53091}, mrnumber = {2828129}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2600/} }
TY - JOUR AU - Sandon, Sheila TI - Contact Homology, Capacity and Non-Squeezing in $\mathbb{R}^{2n}\times S^{1}$ via Generating Functions JO - Annales de l'Institut Fourier PY - 2011 SP - 145 EP - 185 VL - 61 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2600/ DO - 10.5802/aif.2600 LA - en ID - AIF_2011__61_1_145_0 ER -
%0 Journal Article %A Sandon, Sheila %T Contact Homology, Capacity and Non-Squeezing in $\mathbb{R}^{2n}\times S^{1}$ via Generating Functions %J Annales de l'Institut Fourier %D 2011 %P 145-185 %V 61 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2600/ %R 10.5802/aif.2600 %G en %F AIF_2011__61_1_145_0
Sandon, Sheila. Contact Homology, Capacity and Non-Squeezing in $\mathbb{R}^{2n}\times S^{1}$ via Generating Functions. Annales de l'Institut Fourier, Volume 61 (2011) no. 1, pp. 145-185. doi : 10.5802/aif.2600. http://www.numdam.org/articles/10.5802/aif.2600/
[1] Legendrian intersections in the 1-jet bundle, University of Warwick (1998) (Ph. D. Thesis)
[2] A partial order on the group of contactomorphisms of via generating functions, Turkish J. Math., Volume 25 (2001), pp. 125-135 | MR | Zbl
[3] Propagation in Hamiltonian dynamics and relative symplectic homology, Duke Math. J., Volume 119 (2003), pp. 65-118 | DOI | MR | Zbl
[4] Une idée du type “géodésiques brisées” pour les systémes hamiltoniens, C. R. Acad. Sci. Paris, Sér. I Math., Volume 298 (1984), pp. 293-296 | MR | Zbl
[5] On generating families, The Floer Memorial Volume (Progr. Math.), Volume 133, Birkhauser, Basel, 1995, pp. 283-296 | MR | Zbl
[6] Critical points of quasi-functions and generating families of Legendrian manifolds, Funct. Anal. Appl., Volume 30 (1996), pp. 118-128 | DOI | MR | Zbl
[7] Minimal atlases of closed contact manifolds, arXiv:0807.3047
[8] Combinatorics of fronts of Legendrian links, and Arnold’s 4-conjectures, Russian Math. Surveys, Volume 60 (2005), pp. 95-149 | DOI | MR | Zbl
[9] Legendrian links, causality, and the Low conjecture, arXiv:0810.5091v2
[10] Non-negative Legendrian isotopy in , arXiv:0905.0983
[11] Symplectic homology and periodic orbits near symplectic submanifolds, Comment. Math. Helv., Volume 79 (2004), pp. 554-581 | DOI | MR | Zbl
[12] Positive loops of Legendrian embeddings (2007) (preprint)
[13] A partial ordering on slices of planar Lagrangians, J. Fixed Point Theory Appl., Volume 3 (2008), pp. 431-447 | DOI | MR | Zbl
[14] New invariants of open symplectic and contact manifolds, J. Amer. Math. Soc., Volume 4 (1991), pp. 513-520 | DOI | MR | Zbl
[15] Lagrangian intersection theory : finite-dimensional approach, Geometry of differential equations (Amer. Math. Soc. Transl. Ser. 2), Volume 186, Amer. Math. Soc., Providence, RI, 1998 p. 27–118, see also : Lagrangian intersections and the stable Morse theory Boll. Un. Mat. Ital., B(7) 11 suppl. (1997), p. 289–326 | MR | Zbl
[16] Geometry of contact transformations and domains: orderability vs squeezing, Geom. and Topol., Volume 10 (2006), pp. 1635-1747 | DOI | MR | Zbl
[17] Partially ordered groups and geometry of contact transformations, Geom. Funct. Anal., Volume 10 (2000), pp. 1448-1476 | DOI | MR | Zbl
[18] Morse theory and global coexistence of singularities on wave fronts, J. London Math. Soc., Volume 74 (2006), pp. 527-544 | DOI | MR | Zbl
[19] Generating families and Legendrian contact homology in the standard contact space, arXiv:0807.4277
[20] An Introduction to Contact Topology, Cambridge University Press, 2008 | MR | Zbl
[21] Relative Hofer-Zehnder capacity and periodic orbits in twisted cotangent bundles, Duke Math. J., Volume 123 (2004), pp. 1-47 | DOI | MR | Zbl
[22] Nonlinear generalization of the Maslov index, Theory of singularities and its applications (Adv. Soviet Math.), Volume 1, Amer. Math. Soc., Providence, RI, 1990, pp. 71-103 | MR | Zbl
[23] A symplectic fixed point theorem for toric manifolds, The Floer Memorial Volume (Progr. Math.), Volume 133, Birkhauser, Basel, 1995, pp. 445-481 | MR | Zbl
[24] Pseudoholomorphic curves in symplectic manifolds, Invent.Math., Volume 82 (1985), pp. 307-347 | DOI | MR | Zbl
[25] Inner and outer Hamiltonian capacities, Bull. Soc. Math. France, Volume 132 (2004), pp. 509-541 | Numdam | MR | Zbl
[26] Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, 1994 | MR | Zbl
[27] Fourier integral operators I, Acta Math., Volume 127 (1971), pp. 17-183 | DOI | MR | Zbl
[28] Generating family invariants for Legendrian links of unknots, Algebr. Geom. Topol., Volume 6 (2006), pp. 895-933 | DOI | MR | Zbl
[29] Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibre cotangent, Invent. Math., Volume 82 (1985), pp. 349-357 | DOI | MR | Zbl
[30] Introduction to Symplectic Topology, Oxford University Press, 1998 | MR | Zbl
[31] Morse homology for generating functions of Lagrangian submanifolds, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 3953-3974 | DOI | MR | Zbl
[32] Sur les immersions lagrangiennes dans un fibré cotangent admettant une phase génératrice globale, C.R. Acad. Sci. Paris, Sér. I Math., Volume 302 (1986), pp. 119-122 | MR | Zbl
[33] Problemes d’intersections et de points fixes en géométrie hamiltonienne, Comment. Math. Helv., Volume 62 (1987), pp. 62-73 | DOI | MR | Zbl
[34] Utilisation des fonctions génératrices en géométrie symplectique globale, Université Denis Diderot (Paris 7) (1995) (Ph. D. Thesis)
[35] Rotation numbers of Hamiltonian isotopies in complex projective spaces, Duke Math. J., Volume 94 (1998), pp. 13-27 | DOI | MR | Zbl
[36] A complete proof of Viterbo’s uniqueness theorem on generating functions, Topology Appl., Volume 96 (1999), pp. 249-266 | DOI | MR | Zbl
[37] Symplectic Homology via generating functions, Geom. Funct. Anal., Volume 4 (1994), pp. 718-748 | DOI | MR | Zbl
[38] Generating Function Polynomials for Legendrian Links, Geom. and Topol., Volume 5 (2001), pp. 719-760 | DOI | MR | Zbl
[39] Functors and computations in Floer homology with applications, Part II (Preprint) | Zbl
[40] Intersection de sous-variétés lagrangiennes, fonctionnelles d’action et indice des systémes hamiltoniens, Bull. Soc. Math. France, Volume 115 (1987), pp. 361-390 | Numdam | MR | Zbl
[41] Symplectic topology as the geometry of generating functions, Math. Ann., Volume 292 (1992), pp. 685-710 | DOI | MR | Zbl
Cited by Sources: