Let be a semistable elliptic curve over . We prove weak forms of Kato’s -congruences for the special values More precisely, we show that they are true modulo , rather than modulo . Whilst not quite enough to establish that there is a non-abelian -function living in , they do provide strong evidence towards the existence of such an analytic object. For example, if these verify the numerical congruences found by Tim and Vladimir Dokchitser.
Soit une courbe elliptique définie sur . Nous démontrons des versions faibles des congruences de Kato, pour les valeurs spéciales Plus précisément, nous vérifions que les congruences sont vraies modulo , plutôt que modulo . Bien que ça ne suffise pas pour établir l’existence d’une fonction -adique qui vit dans elles fournissent beaucoup d’indices de l’existence de cet objet analytique. Par exemple, si les congruences trouvées numériquement par Tim et Vladimir Dokchitser sont vraies.
Keywords: Iwasawa theory, modular forms, $p$-adic $L$-functions
Mot clés : théorie d’Iwasawa, formes modulaires, fonctions $L$ $p$-adiques
@article{AIF_2008__58_3_1023_0, author = {Delbourgo, Daniel and Ward, Tom}, title = {Non-abelian congruences between $L$-values of elliptic curves}, journal = {Annales de l'Institut Fourier}, pages = {1023--1055}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {3}, year = {2008}, doi = {10.5802/aif.2377}, zbl = {1165.11077}, mrnumber = {2427518}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2377/} }
TY - JOUR AU - Delbourgo, Daniel AU - Ward, Tom TI - Non-abelian congruences between $L$-values of elliptic curves JO - Annales de l'Institut Fourier PY - 2008 SP - 1023 EP - 1055 VL - 58 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2377/ DO - 10.5802/aif.2377 LA - en ID - AIF_2008__58_3_1023_0 ER -
%0 Journal Article %A Delbourgo, Daniel %A Ward, Tom %T Non-abelian congruences between $L$-values of elliptic curves %J Annales de l'Institut Fourier %D 2008 %P 1023-1055 %V 58 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2377/ %R 10.5802/aif.2377 %G en %F AIF_2008__58_3_1023_0
Delbourgo, Daniel; Ward, Tom. Non-abelian congruences between $L$-values of elliptic curves. Annales de l'Institut Fourier, Volume 58 (2008) no. 3, pp. 1023-1055. doi : 10.5802/aif.2377. http://www.numdam.org/articles/10.5802/aif.2377/
[1] -functions of elliptic curves and false Tate curve extensions, University of Cambridge (2005) (Ph. D. Thesis)
[2] Algebraicity of -values for elliptic curves in a false Tate curve tower, Math. Proc. Cambridge Philos. Soc., Volume 142 (2007) no. 2, pp. 193-204 | DOI | MR
[3] The main conjecture for elliptic curves without complex multiplication, Publ. Math. Inst. Hautes Études Sci. (2005) no. 101, pp. 163-208 | Numdam | MR | Zbl
[4] Discriminant of Hecke fields and twisted adjoint -values for , Invent. Math., Volume 134 (1998) no. 3, pp. 547-577 | DOI | MR | Zbl
[5] Computations in non-commutative Iwasawa theory, Proc. Lond. Math. Soc. (3), Volume 94 (2007) no. 1, pp. 211-272 (With an appendix by J. Coates and R. Sujatha) | DOI | MR
[6] Root numbers of non-abelian twists of elliptic curves, Proc. London Math. Soc. (3), Volume 91 (2005) no. 2, pp. 300-324 (With an appendix by Tom Fisher) | DOI | MR | Zbl
[7] -adic interpolation of convolutions of Hilbert modular forms, Ann. Inst. Fourier (Grenoble), Volume 47 (1997) no. 2, pp. 365-428 | DOI | Numdam | MR | Zbl
[8] -adic -functions for modular forms, Compositio Math., Volume 62 (1987) no. 1, pp. 31-46 | Numdam | MR | Zbl
[9] of some non-commutative completed group rings, -Theory, Volume 34 (2005) no. 2, pp. 99-140 | DOI | MR | Zbl
[10] Non-Archimedean -functions of Siegel and Hilbert modular forms, Lecture Notes in Mathematics, 1471, Springer-Verlag, Berlin, 1991 | MR | Zbl
[11] Sur les représentations modulaires de degré de , Duke Math. J., Volume 54 (1987) no. 1, pp. 179-230 | DOI | MR | Zbl
[12] Corrections to: “The special values of the zeta functions associated with Hilbert modular forms” [Duke Math. J. 45 (1978), no. 3, 637–679, Duke Math. J., Volume 48 (1981) no. 3, pp. 697 | DOI | Zbl
[13] Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math., Volume 98 (1989) no. 1, pp. 75-106 | DOI | EuDML | MR | Zbl
[14] Number theoretic background, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proc. Sympos. Pure Math., XXXIII), Amer. Math. Soc., Providence, R.I., 1979, pp. 3-26 | MR | Zbl
Cited by Sources: