In this paper, we prove by using the minimax principle that there exist infinitely many -equivariant harmonic maps from a specific Lorentz manifold to a compact Riemannian manifold.
Nous démontrons à l’aide du principe du minimax qu’il existe une infinité d’applications harmoniques, -équivariantes, définies sur une variété lorentzienne donnée et à valeurs dans une riemannienne compacte.
@article{AIF_1991__41_2_511_0,
author = {Ma Li},
title = {On equivariant harmonic maps defined on a {Lorentz} manifold},
journal = {Annales de l'Institut Fourier},
pages = {511--518},
year = {1991},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {41},
number = {2},
doi = {10.5802/aif.1263},
mrnumber = {92m:58026},
zbl = {0754.53046},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1263/}
}
TY - JOUR AU - Ma Li TI - On equivariant harmonic maps defined on a Lorentz manifold JO - Annales de l'Institut Fourier PY - 1991 SP - 511 EP - 518 VL - 41 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1263/ DO - 10.5802/aif.1263 LA - en ID - AIF_1991__41_2_511_0 ER -
Ma Li. On equivariant harmonic maps defined on a Lorentz manifold. Annales de l'Institut Fourier, Tome 41 (1991) no. 2, pp. 511-518. doi: 10.5802/aif.1263
[E] , Proc 1981 Shanghai-Hefei Symps. Diff. Geom. Diff. Eq., Sci. Press, Beijing, (1984), 55-73.
[EL] and , Another Report on Harmonic Maps, Bull. London Math. Soc., 20 (1988), 385-524. | Zbl | MR
[G] , On the Two-dimensional Minkowski space, Comm. Pure and Appl. Math., 33 (1980), 727-738. | Zbl
[M] , Morse Theory, Princeton, 1963. | Zbl
[P1] , Lusternik-Schnirelmann theory on Banach Manifold, Topology, 5 (1966), 115-132. | Zbl | MR
[P2] , The Principle of Symmetric Criticality, Comm. Math. Phys., 69 (1979), 19-30. | Zbl | MR
[V-PS] , , The Homology Theory of the Closed Geodesic Problem, J. Diff. Geom., 11 (1976), 633-644. | Zbl | MR
Cité par Sources :





