In this paper, we provide new concentration inequalities for suprema of (possibly) non-centered and unbounded empirical processes associated with independent and identically distributed random variables. In particular, we establish Fuk–Nagaev type inequalities with the optimal constant in the moderate deviation bandwidth. The proof builds on martingale methods and comparison inequalities, allowing to bound generalized quantiles as the so-called Conditional Value-at-Risk. Importantly, we also extent the left concentration inequalities of Klein (2002) to classes of unbounded functions.
Dans cet article, nous donnons des inégalités de concentration pour des suprema de processus empiriques non bornés et (éventuellement) non centrés, associés à des variables aléatoires indépendantes et identiquement distribuées. En particulier, nous établissons des inégalités de type Fuk–Nagaev avec constantes optimales dans la bande des moyennes déviations. Notre approche est basée sur des techniques de martingales et des inégalités de comparaison permettant de majorer des quantiles généralisés comme la CVaR. Nous étendons également les inégalités de concentration à gauche de Klein (2002) à des classes de fonctions non bornées.
Accepted:
Published online:
Keywords: concentration inequalities, empirical processes, martingale method, generalized moments
@article{AHL_2021__4__831_0, author = {Marchina, Antoine}, title = {Concentration inequalities for suprema of unbounded empirical processes}, journal = {Annales Henri Lebesgue}, pages = {831--861}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.90}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.90/} }
Marchina, Antoine. Concentration inequalities for suprema of unbounded empirical processes. Annales Henri Lebesgue, Volume 4 (2021), pp. 831-861. doi : 10.5802/ahl.90. http://www.numdam.org/articles/10.5802/ahl.90/
[Ada08] A tail inequality for suprema of unbounded empirical processes with applications to Markov chains, Electron. J. Probab., Volume 13 (2008), pp. 1000-1034 | DOI | MR | Zbl
[BBLM05] Moment inequalities for functions of independent random variables, Ann. Probab., Volume 33 (2005) no. 2, pp. 514-560 | DOI | MR | Zbl
[BDR15] Concentration Inequalities for Sums and Martingales, SpringerBriefs in Mathematics, Springer, 2015 | DOI | Zbl
[Ben03] An Inequality for Tail Probabilities of Martingales with Differences Bounded from One Side, J. Theor. Probab., Volume 16 (2003) no. 1, pp. 161-173 | DOI | MR | Zbl
[Ben04] On Hoeffding’s inequalities, Ann. Probab., Volume 32 (2004) no. 2, pp. 1650-1673 | DOI | MR | Zbl
[Ben08] An extension of the Hoeffding inequality to unbounded random variables, Lith. Math. J., Volume 48 (2008) no. 2, pp. 137-157 | DOI | MR | Zbl
[BLM13] Concentration Inequalities: A Nonasymptotic Theory of Independence, Oxford University Press, 2013 | Zbl
[Bob03] Localization Proof of the Bakry–Ledoux Isoperimetric Inequality and Some Applications, Theory Probab. Appl., Volume 47 (2003) no. 2, pp. 308-314 | DOI | Zbl
[Bou03] Concentration inequalities for sub-additive functions using the entropy method, Stochastic inequalities and applications. Selected papers presented at the Euroconference on “Stochastic inequalities and their applications”, Barcelona, June 18–22, 2002 (Progress in Probability), Volume 56, Birkhäuser, 2003, pp. 213-247 | MR | Zbl
[BS88] Interpolation of operators, Pure and Applied Mathematics, 129, Academic Press Inc., 1988 | MR | Zbl
[CCK14] Gaussian approximation of suprema of empirical processes, Ann. Stat., Volume 42 (2014) no. 4, pp. 1564-1597 | DOI | MR | Zbl
[CIS76] Norms of Gaussian sample functions, Proceedings of the Third Japan. USSR Symposium on Probability Theory (Maruyama, Gisiro; Prokhorov, Jurii V., eds.) (Lecture Notes in Mathematics), Springer (1976), pp. 20-41 | DOI | Zbl
[CL13] Anisotropic adaptive kernel deconvolution, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 49 (2013) no. 2, pp. 569-609 | Numdam | MR | Zbl
[Dir15] Tail bounds via generic chaining, Electron. J. Probab., Volume 20 (2015), 53 | DOI | MR | Zbl
[GM88] A simple proof of a theorem of Blackwell and Dubins on the maximum of a uniformly integrable martingale, Séminaire de probabilités XXII, Strasbourg/France (Lecture Notes in Mathematics), Volume 1321, Springer, 1988, pp. 214-216 | DOI | MR | Zbl
[GN16] Mathematical foundations of infinite-dimensional statistical models, Cambridge Series in Statistical and Probabilistic Mathematics, 40, Cambridge University Press, 2016 | DOI | MR | Zbl
[Hoe63] Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc., Volume 58 (1963), pp. 13-30 | DOI | MR | Zbl
[Kle02] Une inégalité de concentration à gauche pour les processus empiriques, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 6, pp. 501-504 | DOI | MR | Zbl
[KR05] Concentration around the mean for maxima of empirical processes, Ann. Probab., Volume 33 (2005) no. 3, pp. 1060-1077 | DOI | MR | Zbl
[L13] The Bernstein–Orlicz norm and deviation inequalities, Probab. Theory Relat. Fields, Volume 157 (2013) no. 1-2, pp. 225-250 | DOI | MR | Zbl
[Led97] On Talagrand’s deviation inequalities for product measures, ESAIM, Probab. Stat., Volume 1 (1997), pp. 63-87 | DOI | Numdam | MR | Zbl
[LvdG14] New concentration inequalities for suprema of empirical processes, Bernoulli, Volume 20 (2014) no. 4, pp. 2020-2038 | DOI | MR | Zbl
[Mar18] Concentration inequalities for separately convex functions, Bernoulli, Volume 24 (2018) no. 4A, pp. 2906-2933 | DOI | MR | Zbl
[Mas00] About the constants in Talagrand’s concentration inequalities for empirical processes, Ann. Probab., Volume 28 (2000) no. 2, pp. 863-884 | DOI | MR | Zbl
[Pin06] On normal domination of (super)martingales, Electron. J. Probab., Volume 11 (2006), pp. 1049-1070 | DOI | MR | Zbl
[Pin14a] On the Bennett-–Hoeffding inequality, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 50 (2014) no. 1, pp. 15-27 | DOI | Numdam | MR | Zbl
[Pin14b] An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality, Risks, Volume 2 (2014) no. 3, pp. 349-392 | DOI
[Pin15] Rosenthal-type inequalities for martingales in 2-smooth Banach spaces, Theory Probab. Appl., Volume 59 (2015) no. 4, pp. 699-706 | DOI | MR | Zbl
[Rio01] Inégalités de concentration pour les processus empiriques de classes de parties, Probab. Theory Relat. Fields, Volume 119 (2001) no. 2, pp. 163-175 | DOI | MR | Zbl
[Rio02] Une inégalité de Bennett pour les maxima de processus empiriques, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 38 (2002) no. 6, pp. 1053-1057 (En l’honneur de J. Bretagnolle, D. Dacunha-Castelle, I. Ibragimov) | DOI | Numdam | MR | Zbl
[Rio12] Sur la fonction de taux dans les inégalités de Talagrand pour les processus empiriques, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 5-6, pp. 303-305 | DOI | MR | Zbl
[Rio17a] About the constants in the Fuk–Nagaev inequalities, Electron. Commun. Probab., Volume 22 (2017), 28 | DOI | MR | Zbl
[Rio17b] Asymptotic theory of weakly dependent random processes, Probability Theory and Stochastic Modelling, 80, Springer, 2017 (Translated from the 2000 French edition [MR2117923]) | DOI | MR | Zbl
[RU00] Optimization of conditional value-at-risk, Risks, Volume 2 (2000), pp. 21-42 | DOI
[Sam07] Infimum-convolution description of concentration properties of product probability measures, with applications, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 43 (2007) no. 3, pp. 321-338 | DOI | Numdam | MR | Zbl
[Sio58] On general minimax theorems, Pac. J. Math., Volume 8 (1958), pp. 171-176 | DOI | MR | Zbl
[Tal96] New concentration inequalities in product spaces, Invent. Math., Volume 126 (1996) no. 3, pp. 505-563 | DOI | MR | Zbl
[W96] Weak Convergence and Empirical Processes: With Applications to Statistics, Springer Series in Statistics, Springer, 1996 | Zbl
[W11] A local maximal inequality under uniform entropy, Electron. J. Stat., Volume 5 (2011), pp. 192-203 | DOI | MR | Zbl
Cited by Sources: