The Dirichlet random walk
Annales Henri Lebesgue, Volume 5 (2022), pp. 1295-1328.

In this article we define and study a stochastic process on Galoisian covers of compact manifolds. The successive positions of the process are defined recursively by picking a point uniformly in the Dirichlet domain of the previous one. We prove a theorem à la Kesten for such a process: the escape rate of the random walk is positive if and only if the cover is non amenable. We also investigate more in details the case where the deck group is Gromov hyperbolic, showing the almost sure convergence to the boundary of the trajectory as well as a central limit theorem for the escape rate.

Dans cet article on définit un processus stochastique sur les revêtements galoisiens d’une variété compacte. Les positions successives du processus sont données en tirant uniformément par rapport à la mesure Riemannienne un point dans le domaine de Dirichlet associé à la position précédente. On démontre un théorème à la Kesten  : la vitesse de fuite de la marche est positive si et seulement si le revêtement est moyennable. On étudie plus particulièrement le cas où le groupe de revêtement est hyperbolique. On démontre alors la convergence presque sûre au bord ainsi qu’un théorème central limite.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/ahl.152
Classification: 53C20, 58D19, 60J35
Keywords: stochastic processes, Riemannian geometry, group actions
Boulanger, Adrien 1; Glorieux, Olivier 2

1 Technopôle Château-Gombert 39, rue Frédéric Joliot-Curie 13453 MARSEILLE Cedex 13 (France)
2 Université Rennes 1, IRMAR / UFR Math, Campus de Beaulieu, 35042 Rennes Cedex (France)
@article{AHL_2022__5__1295_0,
     author = {Boulanger, Adrien and Glorieux, Olivier},
     title = {The {Dirichlet} random walk},
     journal = {Annales Henri Lebesgue},
     pages = {1295--1328},
     publisher = {\'ENS Rennes},
     volume = {5},
     year = {2022},
     doi = {10.5802/ahl.152},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ahl.152/}
}
TY  - JOUR
AU  - Boulanger, Adrien
AU  - Glorieux, Olivier
TI  - The Dirichlet random walk
JO  - Annales Henri Lebesgue
PY  - 2022
SP  - 1295
EP  - 1328
VL  - 5
PB  - ÉNS Rennes
UR  - http://www.numdam.org/articles/10.5802/ahl.152/
DO  - 10.5802/ahl.152
LA  - en
ID  - AHL_2022__5__1295_0
ER  - 
%0 Journal Article
%A Boulanger, Adrien
%A Glorieux, Olivier
%T The Dirichlet random walk
%J Annales Henri Lebesgue
%D 2022
%P 1295-1328
%V 5
%I ÉNS Rennes
%U http://www.numdam.org/articles/10.5802/ahl.152/
%R 10.5802/ahl.152
%G en
%F AHL_2022__5__1295_0
Boulanger, Adrien; Glorieux, Olivier. The Dirichlet random walk. Annales Henri Lebesgue, Volume 5 (2022), pp. 1295-1328. doi : 10.5802/ahl.152. http://www.numdam.org/articles/10.5802/ahl.152/

[Bjo10] Bjorklund, M. Central limit theorems for Gromov hyperbolic groups, J. Theor. Probab., Volume 23 (2010) no. 3, pp. 871-887 | DOI | MR | Zbl

[BMSC21] Boulanger, Adrien; Mathieu, Pierre; Sisto, Alessandro; Cagri, Sert Large deviations for random walks on Gromov-hyperbolic spaces (2021) (https://arxiv.org/abs/2008.02709, to appear in Annales Scientifiques de l’École Normale Supérieure)

[BQ16] Benoist, Yves; Quint, Jean-François Central limit theorem on hyperbolic groups, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 80 (2016) no. 1, pp. 5-26 | MR | Zbl

[Bus82] Buser, Peter A note on the isoperimetric constant, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982), pp. 213-230 | DOI | Numdam | MR | Zbl

[CF16] Cozzi, Matteo; Figalli, Alessio Regularity Theory for Local and Nonlocal Minimal Surfaces: An Overview, Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions (Lecture Notes in Mathematics), Volume 2186, Springer; Fondazione CIME, 2016, pp. 117-158 | DOI | Zbl

[Cou16] Coudène, Yves Ergodic Theory and Dynamical Systems, Universitext, Springer; EDP Sciences; CNRS Editions, 2016 | DOI | MR | Zbl

[CSC95] Coulhon, Thierry; Saloff-Coste, Laurent Variétés riemanniennes isométriques à l’infini, Rev. Mat. Iberoam., Volume 11 (1995) no. 3, pp. 687-726 | DOI | Zbl

[EG15] Evans, Lawrence C.; Gariepy, Ronald F. Measure theory and fine properties of functions, Textbooks in Mathematics, CRC Press, 2015 | DOI | Zbl

[GdlH90] Ghys, Étienne; de la Harpe, Pierre Hyperbolic groups, Progress in Mathematics, 83, Birkhäuser, 1990 | Zbl

[IT01] Itoh, Jin-ichi; Tanaka, Minoru The Lipschitz continuity of the distance function to the cut locus, Trans. Am. Math. Soc., Volume 353 (2001) no. 1, pp. 21-40 | DOI | MR | Zbl

[Kan85] Kanai, Masahiko Rough isometries and combinatorial approximation of geometries of non-compact Riemannian manifolds, J. Math. Soc. Japan, Volume 37 (1985), pp. 391-413 | MR | Zbl

[Kes59] Kesten, Harry Full Banach mean values on countable groups, Math. Scand., Volume 7 (1959), pp. 146-156 | DOI | MR | Zbl

[Kin68] Kingman, John F. C. The ergodic theory of subadditive stochastic processes, J. R. Stat. Soc., Ser. B, Stat. Methodol., Volume 30 (1968), pp. 499-510 | MR | Zbl

[Led95] Ledrappier, François Central Limit theorem in negative curvature, Ann. Probab., Volume 23 (1995) no. 3, pp. 1219-1233 | MR | Zbl

[MRT19] Mazón, José M.; Rossi, Julio D.; Toledo, Julián Nonlocal perimeter, curvature and minimal surfaces for measurable sets, J. Anal. Math., Volume 138 (2019) no. 1, pp. 235-279 | DOI | MR | Zbl

[MS20] Mathieu, Pierre; Sisto, Alessandro Deviation inequalities for random walks, Duke Math. J., Volume 169 (2020) no. 5, pp. 961-1036 | MR | Zbl

[Sul83] Sullivan, Dennis P. The Dirichlet problem at infinity for a negatively curved manifold, J. Differ. Geom., Volume 18 (1983), pp. 723-732 | MR | Zbl

Cited by Sources: