Four-manifolds with shadow-complexity one
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 31 (2022) no. 4, pp. 1111-1212.

Nous étudions expérimentalement l’ensemble de toutes les 4-variétés lisses orientées fermées, selon une complexité définie à l’aide des ombres de Turaev. Cette complexité mesure à peu près à quel point le 2-squelette de la 4-variété est compliqué.

Nous caractérisons ici toutes les 4-variétés orientées fermées qui ont complexité mineure ou égale à 1. Ces variétés sont engendrées par un certain ensemble de 20 blocs, qui sont des 4-variétés relativement simples avec un bord constitué de copies de S 2 ×S 1 , plus des sommes connexes avec des copies de ℂℙ 2 avec orientation arbitraire.

Toutes les variétés générées par ces blocs sont des doubles. Beaucoup d’entre elles sont des doubles de corps à 2-anses et sont donc efficacement codifiées en utilisant des présentations finies de groupes. Contrairement au cas de complexité zéro, en complexité 1 il y a aussi beaucoup de doubles qui ne sont pas doubles de corps à 2-anses, comme par exemple ℝℙ 3 ×S 1 .

We study the set of all closed oriented smooth 4-manifolds experimentally, according to a suitable complexity defined using Turaev’s shadows. This complexity roughly measures how complicated the 2-skeleton of the 4-manifold is.

We characterise here all the closed oriented 4-manifolds that have complexity at most one. They are generated by a certain set of 20 blocks, that are some basic 4-manifolds with boundary consisting of copies of S 2 ×S 1 , plus connected sums with some copies of ℂℙ 2 with either orientation.

All the manifolds generated by these blocks are doubles. Many of these are doubles of 2-handlebodies and are hence efficiently encoded using finite presentations of groups. In contrast to the complexity zero case, in complexity one there are also plenty of doubles that are not doubles of 2-handlebodies, like for instance ℝℙ 3 ×S 1 .

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1715
Koda, Yuya 1 ; Martelli, Bruno 2 ; Naoe, Hironobu 3

1 Department of Mathematics Hiroshima University, 1-3-1 Kagamiyama, Higashi - Hiroshima, 739-8526, Japan
2 Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy
3 Department of Mathematics Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
@article{AFST_2022_6_31_4_1111_0,
     author = {Koda, Yuya and Martelli, Bruno and Naoe, Hironobu},
     title = {Four-manifolds with shadow-complexity one},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1111--1212},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {4},
     year = {2022},
     doi = {10.5802/afst.1715},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/afst.1715/}
}
TY  - JOUR
AU  - Koda, Yuya
AU  - Martelli, Bruno
AU  - Naoe, Hironobu
TI  - Four-manifolds with shadow-complexity one
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
SP  - 1111
EP  - 1212
VL  - 31
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - http://www.numdam.org/articles/10.5802/afst.1715/
DO  - 10.5802/afst.1715
LA  - en
ID  - AFST_2022_6_31_4_1111_0
ER  - 
%0 Journal Article
%A Koda, Yuya
%A Martelli, Bruno
%A Naoe, Hironobu
%T Four-manifolds with shadow-complexity one
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 1111-1212
%V 31
%N 4
%I Université Paul Sabatier, Toulouse
%U http://www.numdam.org/articles/10.5802/afst.1715/
%R 10.5802/afst.1715
%G en
%F AFST_2022_6_31_4_1111_0
Koda, Yuya; Martelli, Bruno; Naoe, Hironobu. Four-manifolds with shadow-complexity one. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 31 (2022) no. 4, pp. 1111-1212. doi : 10.5802/afst.1715. http://www.numdam.org/articles/10.5802/afst.1715/

[1] Agol, Ian Bounds on exceptional Dehn filling, Geom. Topol., Volume 4 (2000), pp. 431-439 | DOI | MR | Zbl

[2] Burton, Benjamin A.; Budney, Ryan; Pettersson, William et al. Regina, software for low-dimensional topology (https://regina-normal.github.io/)

[3] Burton, Benjamin A.; Spreer, Jonathan Computationally proving triangulated 4-manifolds to be diffeomorphic, 29th ACM Symposium on Computational Geometry, Young Researchers Forum, Collections of abstracts, ACM Press, 2013, pp. 15-16

[4] Callahan, Patrick J.; Hildebrand, Martin V.; Weeks, Jeffrey R. A census of cusped hyperbolic 3-manifolds, Math. Comput., Volume 68 (1999) no. 225, pp. 321-332 | DOI | MR | Zbl

[5] Casali, Maria Rita; Cristofori, Paola Cataloguing PL 4-manifolds by gem-complexity, Electron. J. Comb., Volume 22 (2015) no. 4, 4.25, 25 pages | MR | Zbl

[6] Collins, Donald J.; Zieschang, Heiner Combinatorial group theory and fundamental groups., Algebra VII. Combinatorial group theory. Applications to geometry (Encyclopaedia of Mathematical Sciences), Volume 58, Springer, 1993, pp. 1-166 | MR

[7] Costantino, Francesco Complexity of 4-manifolds, Exp. Math., Volume 15 (2006) no. 2, pp. 237-249 | DOI | MR | Zbl

[8] Costantino, Francesco; Frigerio, Roberto; Martelli, Bruno; Petronio, Carlo Triangulations of 3-manifolds, hyperbolic relative handlebodies, and Dehn filling, Comment. Math. Helv., Volume 82 (2007) no. 4, pp. 903-934 | DOI | MR | Zbl

[9] Costantino, Francesco; Thurston, Dylan 3-manifolds efficiently bound 4-manifolds, J. Topol., Volume 1 (2008) no. 3, pp. 703-745 | DOI | MR | Zbl

[10] Coxeter, Harold S. M. The abstract groups G m,n,p , Trans. Am. Math. Soc., Volume 45 (1939), pp. 73-150 | DOI | Zbl

[11] Culler, Marc; Dunfield, Nathan; Weeks, Jeff SnapPy, a computer program for studying the geometry and topology of 3-manifolds (http://www.math.uic.edu/t3m/SnapPy/)

[12] Donaldson, Simon K. Some problems in differential geometry and topology, Nonlinearity, Volume 21 (2008) no. 9, pp. 157-164 | DOI | MR | Zbl

[13] Freedman, Michael H. Group width, Math. Res. Lett., Volume 18 (2011) no. 3, pp. 433-436 | DOI | MR | Zbl

[14] Gabai, David Foliations and the topology of 3-manifolds. III, J. Differ. Geom., Volume 26 (1987) no. 3, pp. 479-536 | MR | Zbl

[15] Gluck, Herman The embedding of two-spheres in the four-sphere, Trans. Am. Math. Soc., Volume 104 (1962), pp. 308-333 | DOI | MR | Zbl

[16] Gordon, Cameron McA.; Luecke, John Knots are determined by their complements, J. Am. Math. Soc., Volume 2 (1989) no. 2, pp. 371-415 | DOI | MR | Zbl

[17] Hambleton, Ian; Kreck, Matthias; Teichner, Peter Topological 4-manifolds with geometrically 2-dimensional fundamental groups, J. Topol. Anal., Volume 1 (2009) no. 2, p. 123-51 | DOI | MR | Zbl

[18] Two-Dimensional Homotopy And Combinatorial Group Theory (Hog-Angeloni, Cynthia; Metzler, Wolfgang; Sieradski, Allan J., eds.), London Mathematical Society Lecture Note Series, 197, Cambridge University Press, 1993 | DOI | Zbl

[19] Hoste, Jim; Thistlethwaite, Morwen; Weeks, Jeff The first 1,701,936 knots, Math. Intell., Volume 20 (1998) no. 4, pp. 33-48 | DOI | MR | Zbl

[20] Ishikawa, Masaharu; Koda, Yuya Stable maps and branched shadows of 3-manifolds, Math. Ann., Volume 367 (2017) no. 3-4, pp. 1819-1863 | DOI | MR | Zbl

[21] Lackenby, Marc Word hyperbolic Dehn surgery, Invent. Math., Volume 140 (2000) no. 2, pp. 243-282 | DOI | MR | Zbl

[22] Laudenbach, François; Poenaru, Valentin A note on 4-dimensional handlebodies, Bull. Soc. Math. Fr., Volume 100 (1972), pp. 337-344 | DOI | Numdam | MR | Zbl

[23] Martelli, Bruno Four-manifolds with shadow-complexity zero, Int. Math. Res. Not., Volume 2011 (2011) no. 6, pp. 1268-1351 | MR | Zbl

[24] Martelli, Bruno; Petronio, Carlo Dehn filling of the “magic” 3-manifold, Commun. Anal. Geom., Volume 14 (2006) no. 5, pp. 969-1026 | DOI | MR | Zbl

[25] Martelli, Bruno; Petronio, Carlo; Roukema, Fionntan Exceptional Dehn surgery on the minimally twisted five-chain link, Commun. Anal. Geom., Volume 22 (2014) no. 4, pp. 689-735 | DOI | MR | Zbl

[26] Matveev, Sergeĭ V. The theory of the complexity of three-dimensional manifolds, Akad. Nauk Ukrain. SSR Inst. Mat. Preprint,, Volume 13 (1988) (32 pages) | MR

[27] Matveev, Sergeĭ V. et al. The atlas of 3-manifolds (http://matlas.math.csu.ru)

[28] Meier, Jeffrey Trisections and spun four-manifolds, Math. Res. Lett., Volume 25 (2018) no. 5, pp. 1497-1524 | DOI | MR | Zbl

[29] Meier, Jeffrey; Zupan, Alexander Genus-two trisections are standard, Geom. Topol., Volume 21 (2017) no. 3, pp. 1583-1630 | DOI | MR | Zbl

[30] Naoe, Hironobu Shadows of 4-manifolds with complexity zero and polyhedral collapsing, Proc. Am. Math. Soc., Volume 145 (2017) no. 10, pp. 4561-4572 | DOI | MR | Zbl

[31] Naoe, Hironobu Mazur manifolds and corks with small shadow complexities, Osaka J. Math., Volume 55 (2018) no. 3, pp. 479-498 | MR | Zbl

[32] Naoe, Hironobu Corks with large shadow-complexity and exotic four-manifolds, Exp. Math., Volume 30 (2021) no. 2, pp. 157-171 | DOI | MR | Zbl

[33] Neumann, Walter D.; Weintraub, Steven H. Four-manifolds constructed via plumbing, Math. Ann., Volume 238 (1978), pp. 71-78 | DOI | MR | Zbl

[34] Spreer, Jonathan; Tillmann, Stephan The trisection genus of the standard simply connected PL 4-manifolds, 34th International Symposium on Computational Geometry (SoCG 2018) (Leibniz International Proceedings in Informatics (LIPIcs)), Volume 99, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018, p. 71:1-71:13 | MR | Zbl

[35] Turaev, Vladimir G. Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter, 1994 | DOI | MR

[36] Wu, Ying-Qing Dehn Surgery on Arborescent Links, Trans. Am. Math. Soc., Volume 351 (1999) no. 6, pp. 2275-2294 | MR | Zbl

[37] Yoshida, Ken’ichi The minimal volume orientable hyperbolic 3-manifold with 4 cusps, Pac. J. Math., Volume 266 (2013) no. 2, pp. 457-476 | DOI | MR | Zbl

Cité par Sources :