Open problems on structure of positively curved projective varieties
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, AMAZER, Volume 31 (2022) no. 3, pp. 1011-1029.

We provide supplements and open problems related to structure theorems for maximal rationally connected fibrations of certain positively curved projective varieties, including smooth projective varieties with semi-positive holomorphic sectional curvature, pseudo-effective tangent bundle, and nef anti-canonical divisor.

Nous fournissons des suppléments et des problèmes ouverts liés aux théorèmes de structure pour les fibrations maximales rationnellement connectées de certaines variétés projectives à courbure positive, y compris les variétés projectives lisses avec une courbure de section holomorphe semi-positive, un faisceau tangent pseudo-efficace et un diviseur anticanonique nef.

Published online:
DOI: 10.5802/afst.1712
Classification: 32J25, 53C25, 14E30
Mots-clés : Rational curves, Maximal rationally connected fibrations, Albanese maps, Structure theorems, Holomorphic sectional curvatures, Pseudo-effective tangent bundles, Nef anti-canonical divisors, klt pairs.
Matsumura, Shin-ichi 1

1 Mathematical Institute, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
@article{AFST_2022_6_31_3_1011_0,
     author = {Matsumura, Shin-ichi},
     title = {Open problems on structure  of positively curved projective varieties},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1011--1029},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {3},
     year = {2022},
     doi = {10.5802/afst.1712},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/afst.1712/}
}
TY  - JOUR
AU  - Matsumura, Shin-ichi
TI  - Open problems on structure  of positively curved projective varieties
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
SP  - 1011
EP  - 1029
VL  - 31
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - http://www.numdam.org/articles/10.5802/afst.1712/
DO  - 10.5802/afst.1712
LA  - en
ID  - AFST_2022_6_31_3_1011_0
ER  - 
%0 Journal Article
%A Matsumura, Shin-ichi
%T Open problems on structure  of positively curved projective varieties
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 1011-1029
%V 31
%N 3
%I Université Paul Sabatier, Toulouse
%U http://www.numdam.org/articles/10.5802/afst.1712/
%R 10.5802/afst.1712
%G en
%F AFST_2022_6_31_3_1011_0
Matsumura, Shin-ichi. Open problems on structure  of positively curved projective varieties. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, AMAZER, Volume 31 (2022) no. 3, pp. 1011-1029. doi : 10.5802/afst.1712. http://www.numdam.org/articles/10.5802/afst.1712/

[1] Alvarez, Angelynn; Heier, Gordon; Zheng, Fangyang On projectivized vector bundles and positive holomorphic sectional curvature, Proc. Am. Math. Soc., Volume 146 (2018) no. 7, pp. 2877-2882 | DOI | MR | Zbl

[2] Bauer, Thomas; Kovács, Sándor J.; Küronya, Alex; Mistretta, Ernesto C.; Szemberg, Tomasz; Urbinati, Stefano On positivity and base loci of vector bundles, Eur. J. Math., Volume 1 (2015) no. 2, pp. 229-249 | DOI | MR | Zbl

[3] Berndtsson, Bo Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., Volume 169 (2009) no. 2, pp. 531-560 | DOI | MR | Zbl

[4] Berndtsson, Bo; Păun, Mihai Bergman kernels and the pseudoeffectivity of relative canonical divisors, Duke Math. J., Volume 145 (2008) no. 2, pp. 341-378 | DOI | Zbl

[5] Boucksom, Sébastien Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | Numdam | MR | Zbl

[6] Boucksom, Sébastien; Demailly, Jean-Pierre; Păun, Mihai; Peternell, Thomas The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | Zbl

[7] Campana, Frédéric Connexité rationnelle des variétés de Fano, Ann. Sci. Éc. Norm. Supér., Volume 25 (1992) no. 5, pp. 539-545 | DOI | Zbl

[8] Campana, Frédéric Orbifolds, special varieties and classification theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-630 | DOI | Numdam | MR | Zbl

[9] Campana, Frédéric Orbifold slope rational connectedness (2017) (https://arxiv.org/abs/1607.07829v2)

[10] Campana, Frédéric; Cao, Junyan; Matsumura, Shin-ichi Projective klt pairs with nef anti-canonical divisor, Algebr. Geom., Volume 8 (2021) no. 4, pp. 430-464 | DOI | MR | Zbl

[11] Campana, Frédéric; Demailly, Jean-Pierre; Peternell, Thomas Rationally connected manifolds and semipositivity of the Ricci curvature, Recent advances in algebraic geometry (London Mathematical Society Lecture Note Series), Volume 417, Cambridge University Press, 2014, pp. 71-91 | Zbl

[12] Cao, Junyan Albanese maps of projective manifolds with nef anticanonical divisors, Ann. Sci. Éc. Norm. Supér., Volume 52 (2019) no. 5, pp. 1137-1154 | DOI | MR | Zbl

[13] Cao, Junyan; Demailly, Jean-Pierre; Matsumura, Shin-ichi A general extension theorem for cohomology classes on non reduced analytic subspaces, Sci. China, Math., Volume 60 (2017) no. 6, pp. 949-962 | MR | Zbl

[14] Cao, Junyan; Höring, Andreas A decomposition theorem for projective manifolds with nef anticanonical bundle, J. Algebr. Geom., Volume 28 (2019) no. 3, pp. 567-597 | MR | Zbl

[15] Cheeger, Jeff; Colding, Tobias H. Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. Math., Volume 144 (1996) no. 1, pp. 189-237 | DOI | MR | Zbl

[16] Demailly, Jean-Pierre; Peternell, Thomas; Schneider, Michael Compact complex manifolds with numerically effective tangent bundles, Complex Manifolds, Volume 3 (1994) no. 2, pp. 295-345 | MR | Zbl

[17] Diverio, Simone; Trapani, Stefano Quasi-negative holomorphic sectional curvature and positivity of the canonical divisor, J. Differ. Geom., Volume 111 (2019) no. 2, pp. 303-314 | Zbl

[18] Druel, Stéphane A decomposition theorem for singular spaces with trivial canonical class of dimension at most five, Invent. Math., Volume 211 (2018) no. 1, pp. 245-296 | DOI | MR | Zbl

[19] Ein, Lawrence; Lazarsfeld, Robert; Mustaţă, Mircea; Nakamaye, Michael; Popa, Mihnea Asymptotic invariants of base loci, Ann. Inst. Fourier, Volume 56 (2006) no. 6, pp. 1701-1734 | Numdam | MR | Zbl

[20] Ein, Lawrence; Lazarsfeld, Robert; Mustaţă, Mircea; Nakamaye, Michael; Popa, Mihnea Restricted volumes and base loci of linear series, Am. J. Math., Volume 131 (2009) no. 3, pp. 607-651 | DOI | MR | Zbl

[21] Ejiri, Sho; Gongyo, Yoshinori Nef anti-canonical divisors and rationally connected fibrations, Compos. Math., Volume 155 (2019) no. 7, pp. 1444-1456 | DOI | MR | Zbl

[22] Ejiri, Sho; Iwai, Masataka; Matsumura, Shin-ichi On asymptotic base loci of relative anti-canonical divisors of algebraic fiber spaces (2005) (https://arxiv.org/abs/2005.04566v1)

[23] Fulger, Mihai; Murayama, Takumi Seshadri constants for vector bundles, J. Pure Appl. Algebra, Volume 225 (2021) no. 4, 106559, 35 pages | MR | Zbl

[24] Graber, Tom; Harris, Joe; Starr, Jason Families of rationally connected varieties, J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 57-67 | DOI | MR | Zbl

[25] Greb, Daniel; Guenancia, Henri; Kebekus, Stefan Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups, Geom. Topol., Volume 23 (2019) no. 4, pp. 2051-2124 | DOI | MR | Zbl

[26] Greb, Daniel; Kebekus, Stefan; Peternell, Thomas Singular spaces with trivial canonical class, Minimal models and extremal rays (Kyoto, 2011) (Advanced Studies in Pure Mathematics), Volume 70, Mathematical Society of Japan, 2016, pp. 67-113 | DOI | MR | Zbl

[27] Hacon, Christopher; McKernan, James On Shokurov’s rational connectedness conjecture, Duke Math. J., Volume 138 (2007) no. 1, pp. 119-136 | MR | Zbl

[28] Hacon, Christopher; Popa, Mihnea; Schnell, Christian Algebraic fiber spaces over abelian varieties: around a recent theorem by Cao and Pǎun, Local and global methods in algebraic geometry (Contemporary Mathematics), Volume 712, American Mathematical Society, 2018, pp. 143-195 | Zbl

[29] Heier, Gordon; Lu, Steven S. Y.; Wong, Bun; Zheng, Fangyang Reduction of manifolds with semi-negative holomorphic sectional curvature, Math. Ann., Volume 372 (2018) no. 3-4, pp. 951-962 | DOI | MR | Zbl

[30] Heier, Gordon; Wong, Bun On projective Kähler manifolds of partially positive curvature and rational connectedness, Doc. Math., Volume 25 (2020), pp. 219-238 | Zbl

[31] Hitchin, Nigel J. On the curvature of rational surfaces, Differential geometry (Stanford Univ., Stanford, 1973) (Proceedings of Symposia in Pure Mathematics), Volume 27 part 2, American Mathematical Society, 1973, pp. 65-80 | Zbl

[32] Höring, Andreas Uniruled varieties with split tangent bundle, Math. Z., Volume 256 (2007) no. 3, pp. 465-479 | DOI | MR | Zbl

[33] Höring, Andreas; Liu, Jie; Shao, Feng Examples of Fano manifolds with non-pseudoeffective tangent bundle (2020) (https://arxiv.org/abs/2003.09476v1)

[34] Höring, Andreas; Peternell, Thomas Algebraic integrability of foliations with numerically trivial canonical divisor, Invent. Math., Volume 216 (2019) no. 2, pp. 395-419 | DOI | Zbl

[35] Hosono, Genki; Iwai, Masataka; Matsumura, Shin-ichi On projective manifolds with pseudo-effective tangent bundle (2021) (to appear in J. Inst. Math. Jussieu, https://doi.org/10.1017/S1474748020000754) | DOI

[36] Howard, Alan; Smyth, Brian; Wu, Hung-Hsi On compact Kähler manifolds of nonnegative bisectional curvature I and II, Acta Math., Volume 147 (1981) no. 1-2, pp. 51-70 | DOI | Zbl

[37] Kollár, János; Miyaoka, Yoichi; Mori, Shigefumi Rationally connected varieties, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 429-448 | MR | Zbl

[38] Matsumura, Shin-ichi Asymptotic cohomology vanishing and a converse to the Andreotti-Grauert theorem on surfaces, Ann. Inst. Fourier, Volume 63 (2013) no. 6, pp. 2199-2221 | DOI | Numdam | MR | Zbl

[39] Matsumura, Shin-ichi On projective manifolds with semi-positive holomorphic sectional curvature (2018) (https://arxiv.org/abs/1811.04182v1, to appear in Am. J. Math.)

[40] Matsumura, Shin-ichi On the image of MRC fibrations of projective manifolds with semi-positive holomorphic sectional curvature, Pure Appl. Math. Q., Volume 16 (2020) no. 5, pp. 1443-1463 | MR | Zbl

[41] Mok, Ngaiming The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Differ. Geom., Volume 27 (1988) no. 2, pp. 179-214 | Zbl

[42] Mori, Shigefumi Projective manifolds with ample tangent bundles, Ann. Math., Volume 110 (1979) no. 3, pp. 593-606 | DOI | MR | Zbl

[43] Nakayama, Noboru Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004, xiv+277 pages

[44] Paris, Mtthieu Quelques aspects de la positivité du fibré tangent des variétés projectives complexes, Ph. D. Thesis, Université Joseph-Fourier (France) (2010) (https://tel.archives-ouvertes.fr/tel-00552308)

[45] Paun, Mihai Sur le groupe fondamental des variétés kählériennes compactes à classe de Ricci numériquement effective, C. R. Acad. Sci. Paris, Volume 324 (1997) no. 11, pp. 1249-1254 | DOI | MR | Zbl

[46] Păun, Mihai; Takayama, Shigeharu Positivity of twisted relative pluricanonical bundles and their direct images, J. Algebr. Geom., Volume 27 (2018) no. 2, pp. 211-272 | DOI | MR | Zbl

[47] Siu, Yum-Tong; Yau, Shing-Tung Compact Kähler manifolds of positive bisectional curvature, Invent. Math., Volume 59 (1980) no. 2, pp. 189-204 | Zbl

[48] Tosatti, Valentino; Yang, Xiaokui An extension of a theorem of Wu-Yau, J. Differ. Geom., Volume 107 (2017) no. 3, pp. 573-579 | MR | Zbl

[49] Wang, Juanyong Structure of projective varieties with nef anticanonical divisor: the case of log terminal singularities (2020) (https://arxiv.org/abs/2005.05782v2)

[50] Wu, Damin; Yau, Shing-Tung Negative holomorphic curvature and positive canonical divisor, Invent. Math., Volume 204 (2016) no. 2, pp. 595-604 | Zbl

[51] Yang, Xiaokui RC-positivity, rational connectedness and Yau’s conjecture, Camb. J. Math., Volume 6 (2018) no. 2, pp. 183-212 | DOI | MR | Zbl

[52] Yang, Xiaokui A partial converse to the Andreotti-Grauert theorem, Compos. Math., Volume 155 (2019) no. 1, pp. 89-99 | DOI | MR | Zbl

[53] Yang, Xiaokui RC-positive metrics on rationally connected manifolds, Forum Math. Sigma, Volume 8 (2020), e53, 19 pages | MR | Zbl

[54] Yau, Shing-Tung Problem section, Seminar on Differential Geometry (Annals of Mathematics Studies), Volume 102, Princeton University Press, 1982, pp. 669-706 | MR | Zbl

[55] Zhang, Qi On projective manifolds with nef anticanonical bundles, J. Reine Angew. Math., Volume 478 (1996), pp. 57-60 | MR | Zbl

[56] Zhang, Qi On projective varieties with nef anticanonical divisors, Math. Ann., Volume 332 (2005) no. 3, pp. 697-703 | DOI | MR | Zbl

Cited by Sources: