Orthogonal polynomials and diffusion operators
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 30 (2021) no. 5, pp. 985-1073.

Nous considérons le problème suivant : décrire les triplets (Ω,g,μ)g=(g ij (x)) est la (co)métrique associée à l’opérateur différentiel du second ordre symétrique L(f)=1 ρ ij i (g ij ρ j f) défini sur un domaine Ω de d (i.e. L est un opérateur de diffusion de mesure réversible μ(dx)=ρ(x)dx) et tels qu’il existe une base orthonormale de polynômes de 2 (μ) qui sont également vecteurs propres de L, les polynômes étant classés par ordre croissant de leur degré naturel. Nous réduisons ce problème à un problème algébrique (pour tout d) et décrivons les solutions pour d=2 et Ω compact. Nous montrons que pour d=2, et à transformations affines près, il y a 10 domaines compacts Ω et une famille à un paramètre. La preuve de l’exhaustivité de ce classement repose sur des formules de type Plücker pour les courbes duales projectives appliquées à la complexification de Ω. Nous présentons alors une interprétation géométrique de ces différents modèles. Nous donnons également une description des cas non-compacts en dimension d=2.

We study the following problem: describe the triplets (Ω,g,μ) where g=(g ij (x)) is the (co)metric associated with the symmetric second order differential operator L(f)=1 ρ ij i (g ij ρ j f) defined on a domain Ω of d (that is L is a diffusion operator with reversible measure μ(dx)=ρ(x)dx) and such that there exists an orthonormal basis of 2 (μ) made of polynomials which are at the same time eigenvectors of L, where the polynomials are ranked according to their natural degree. We reduce this problem to a certain algebraic problem (for any d) and we find all solutions for d=2 when Ω is compact. Namely, in dimension d=2, and up to affine transformations, we find 10 compact domains Ω plus a one-parameter family. The proof that this list is exhaustive relies on the Plücker-like formulas for the projective dual curves applied to the complexification of Ω. We then describe some geometric origins for these various models. We also give some description of the non-compact cases in this dimension.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1693
Bakry, Dominique 1 ; Orevkov, Stepan 1 ; Zani, Marguerite 2

1 Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
2 Institut Denis Poisson, Université d’Orléans, Université de Tours, CNRS, Route de Chartres, B.P. 6759, 45067, Orléans cedex 2, France
@article{AFST_2021_6_30_5_985_0,
     author = {Bakry, Dominique and Orevkov, Stepan and Zani, Marguerite},
     title = {Orthogonal polynomials and diffusion operators},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {985--1073},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 30},
     number = {5},
     year = {2021},
     doi = {10.5802/afst.1693},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/afst.1693/}
}
TY  - JOUR
AU  - Bakry, Dominique
AU  - Orevkov, Stepan
AU  - Zani, Marguerite
TI  - Orthogonal polynomials and diffusion operators
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2021
SP  - 985
EP  - 1073
VL  - 30
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - http://www.numdam.org/articles/10.5802/afst.1693/
DO  - 10.5802/afst.1693
LA  - en
ID  - AFST_2021_6_30_5_985_0
ER  - 
%0 Journal Article
%A Bakry, Dominique
%A Orevkov, Stepan
%A Zani, Marguerite
%T Orthogonal polynomials and diffusion operators
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2021
%P 985-1073
%V 30
%N 5
%I Université Paul Sabatier, Toulouse
%U http://www.numdam.org/articles/10.5802/afst.1693/
%R 10.5802/afst.1693
%G en
%F AFST_2021_6_30_5_985_0
Bakry, Dominique; Orevkov, Stepan; Zani, Marguerite. Orthogonal polynomials and diffusion operators. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 30 (2021) no. 5, pp. 985-1073. doi : 10.5802/afst.1693. http://www.numdam.org/articles/10.5802/afst.1693/

[1] Alexandrov, Pavel S. Combinatorial Topology, Vol 1,2 and 3, Dover Publications, 1998 (reprint of 1956, 1957 and 1960)

[2] Andrews, George E.; Askey, Richard; Roy, Ranjan Special functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, 1999, xvi+664 pages | DOI

[3] Araki, Shôrô On root systems and an infinitesimal classification of irreducible symmetric spaces, Osaka J. Math., Volume 13 (1962), pp. 1-34 | MR | Zbl

[4] Bakry, Dominique; Bressaud, Xavier Diffusion with polynomial eigenvectors via finite subgroups of O(3), Ann. Fac. Sci. Toulouse, Math., Volume 25 (2016) no. 2-3, pp. 683-721 | DOI | MR | Zbl

[5] Bakry, Dominique; Gentil, Ivan; Ledoux, Michel Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften, 348, Springer, 2013

[6] Bakry, Dominique; Mazet, Olivier Characterization of Markov semigroups on associated to some families of orthogonal polynomials, Séminaire de Probabilités XXXVII (Lecture Notes in Mathematics), Volume 1832, Springer, 2003, pp. 60-80 | DOI | MR | Zbl

[7] Bakry, Dominique; Zani, Marguerite Dyson processes associated with associative algebras: the Clifford case, Geometric aspects of functional analysis. Proceedings of the Israel seminar (GAFA) 2011–2013 (Lecture Notes in Mathematics), Volume 2116, Springer, 2014, pp. 1-37 | DOI | MR | Zbl

[8] Berg, Christian; Christensen, J. P. Reus Density questions in the classical theory of moments, Ann. Inst. Fourier, Volume 31 (1981) no. 3, pp. 99-114 | DOI | Numdam | MR | Zbl

[9] Bochner, Salomon Über Sturm-Liouvillesche Polynomsysteme, Math. Z., Volume 29 (1929) no. 1, pp. 730-736 | DOI | MR | Zbl

[10] Braaksma, Boele L. J.; Meulenbed, Barend Jacobi polynomials as spherical harmonics, Nederl. Akad. Wet., Proc., Ser. A, Volume 71 (1968), pp. 384-389

[11] Brieskorn, Egbert; Knörrer, Horst Plane algebraic curves, Springer, 1986 | DOI

[12] Brinkman, Henri C.; Zernike, Frederik Hypersphärische Funktionen und die in sphärischen Bereichen orthogonalen Polynome, Nederl. Akad. Wet., Proc., Ser. A, Volume 38 (1935), pp. 161-170 | Zbl

[13] Cartan, Élie Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl., Volume 17 (1938), pp. 177-191 | DOI | Zbl

[14] Cartan, Élie Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z., Volume 45 (1939), pp. 335-367 | DOI | Zbl

[15] Cartan, Élie Sur quelques familles remarquables d’hypersurfaces, C. R. Congrès Math. Liège, 1939, pp. 30-41 | Zbl

[16] Cartan, Élie Sur des familles d’hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions, Rev., Ser. A, Univ. Nac. Tucumán, Volume A1 (1940), pp. 5-22 | Zbl

[17] Conway, John H.; Smith, Derek A. On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, 2003 | DOI

[18] Dijksma, Aad; Koornwinder, Tom Spherical harmonics and the product of two Jacobi polynomials, Nederl. Akad. Wet., Proc., Ser. A, Volume 74 (1971), pp. 191-196 | MR | Zbl

[19] Dimca, Alexandru On the de Rham cohomology of a hypersurface complement, Am. J. Math., Volume 113 (1991) no. 4, pp. 763-771 | DOI | MR | Zbl

[20] Doumerc, Yan Matrix Jacobi Process, Ph. D. Thesis, Université Toulouse 3 (2005)

[21] Dunkl, Charles Reflection groups and orthogonal polynomials on the sphere, Math. Z., Volume 197 (1988) no. 1, pp. 33-60 | DOI | MR | Zbl

[22] Dunkl, Charles Differential–difference operators associated to reflection groups, Trans. Am. Math. Soc., Volume 311 (1989) no. 1, pp. 167-183 | DOI | MR | Zbl

[23] Dunkl, Charles; Xu, Yuan Orthogonal polynomials of several variables, Encyclopedia of Mathematics and Its Applications, 81, Cambridge University Press, 2001 | DOI

[24] Dvurčenskij, Anatolij; Lahti, Pekka; Ylinen, Kari The uniqueness question in the multidimensional moment problem with applications to phase space observables, Rep. Math. Phys., Volume 50 (2002) no. 1, pp. 55-68 | DOI | MR | Zbl

[25] Fernández, Lidia; Pérez, Teresa E.; Piñar, Miguel A. Classical orthogonal polynomials in two variables: a matrix approach, Numer. Algorithms, Volume 39 (2005) no. 1-3, pp. 131-142 | DOI | MR | Zbl

[26] Fornberg, Bengt A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and Computational Mathematics, 1, Cambridge University Press, 1998

[27] Greuel, Gert-Martin; Lossen, Christoph; Shustin, E. Introduction to singularities and deformations, Springer Monographs in Mathematics, Springer, 2007

[28] Griffiths, Phillip A. On the periods of certain rational integrals: I, II, Ann. Math., Volume 90 (1969), p. 460-495, 496–541 | DOI | MR | Zbl

[29] Guo, Benyu; Shen, Jie; Wang, Li-Lian Optimal spectral-Galerkin methods using generalized Jacobi polynomials, J. Sci. Comput., Volume 27 (2006) no. 1-3, pp. 305-322 | MR | Zbl

[30] Guo, Benyu; Shen, Jie; Wang, Li-Lian Generalized Jacobi polynomials/functions and their applications, Appl. Numer. Math., Volume 59 (2009) no. 5, pp. 1011-1028 | MR | Zbl

[31] Guo, Benyu; Wan, Zhengsu; Wang, Zhongqing Jacobi pseudospectral method for fourth order problems, J. Comput. Math., Volume 24 (2006) no. 4, pp. 481-500 | MR | Zbl

[32] Hahn, Wolfgang Über Orthogonalpolynome, die q-Differenzengleichungen genügen, Math. Nachr., Volume 2 (1949), pp. 4-34 | DOI | MR | Zbl

[33] Hall, Peter The Bootstrap and Edgeworth expansion, Springer Series in Statistics, Springer, 1992 | DOI

[34] Harish-Chandra Spherical Functions on a Semisimple Lie Group I, Am. J. Math., Volume 80 (1958), pp. 241-310 | DOI

[35] Harish-Chandra Spherical Functions on a Semisimple Lie Group II, Am. J. Math., Volume 80 (1958), pp. 553-613 | DOI | MR | Zbl

[36] Heckman, Gert J. Root systems and hypergeometric functions II, Compos. Math., Volume 64 (1987), pp. 353-373 | Numdam | MR | Zbl

[37] Heckman, Gert J. An elementary approach to the hypergeometric shift operators of Opdam, Invent. Math., Volume 103 (1991) no. 2, pp. 341-350 | DOI | MR | Zbl

[38] Heckman, Gert J. Dunkl operators, Séminaire Bourbaki. Volume 1996/97. Exposés 820–834 (Astérisque), Volume 245, Société Mathématique de France, 1997, pp. 223-246 | Numdam | Zbl

[39] Heckman, Gert J.; Opdam, Eric M. Root sytems and hypergeometric functions I, Compos. Math., Volume 64 (1987), pp. 329-352

[40] Heckman, Gert J.; Schlichtkrull, Henrik Harmonic Analysis and Special Functions on Symmetric Spaces, Perspectives in Mathematics, 16, Academic Press Inc., 1994

[41] Helgason, Sigurdur Groups and Geometric Analysis. Integral geometry, invariant differential operators, and spherical functions, Pure and Applied Mathematics, 113, Academic Press Inc., 1984

[42] Koornwinder, Tom The addition formula for Jacobi polynomials and spherical harmonics, SIAM J. Appl. Math., Volume 25 (1973), pp. 236-246 Lie algebras: applications and computational methods (Conf., Drexel Univ., Philadelphia, Pa., 1972) | DOI | MR | Zbl

[43] Koornwinder, Tom Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. I, Nederl. Akad. Wet., Proc., Ser. A, Volume 77 (1974), pp. 48-58 | Zbl

[44] Koornwinder, Tom Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. II, Nederl. Akad. Wet., Proc., Ser. A, Volume 77 (1974), pp. 59-66 | Zbl

[45] Koornwinder, Tom Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. III, Nederl. Akad. Wet., Proc., Ser. A, Volume 77 (1974), pp. 357-369 | Zbl

[46] Koornwinder, Tom Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. IV, Nederl. Akad. Wet., Proc., Ser. A, Volume 77 (1974), pp. 370-381 | Zbl

[47] Koornwinder, Tom Two-variable analogues of the classical orthogonal polynomials, Theory and application of special functions. Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Volume 35, Academic Press Inc. (1975) | MR | Zbl

[48] Koornwinder, Tom; Schwartz, Alan L. Product formulas and associated hypergroups for orthogonal polynomials on the simplex and on a parabolic biangle, Constr. Approx., Volume 13 (1997) no. 4, pp. 537-567 | DOI | MR | Zbl

[49] Krall, Harry L.; Sheffer, Isador M. Orthogonal polynomials in two variables, Ann. Mat. Pura Appl., Volume 76 (1967), pp. 325-376 | DOI | MR

[50] Kulikov, Vik. S. A remark on classical Pluecker’s formulae, Ann. Fac. Sci. Toulouse, Math., Volume 25 (2016) no. 5, pp. 959-967 | DOI | Numdam | MR | Zbl

[51] Lefschetz, Solomon Algebraic Topology, Colloquium Publications, 27, American Mathematical Society, 1942

[52] Macdonald, Ian G. Symmetric functions and orthogonal polynomials, University Lecture Series, 12, American Mathematical Society, 1998

[53] Macdonald, Ian G. Orthogonal polynomials associated with root systems, Sémin. Lothar. Comb., Volume 45 (2000), B45a, 40 pages | MR | Zbl

[54] Mazet, Olivier Classification des semi–groupes de diffusion sur associés à une famille de polynômes orthogonaux, Séminaire de probabilités XXXI (Lecture Notes in Mathematics), Volume 1655, Springer, 1997, pp. 40-53 | DOI | MR | Zbl

[55] Meyer, Burnett On the symmetries of spherical harmonics, Can. J. Math., Volume 6 (1954), pp. 135-157 | DOI | MR | Zbl

[56] Milnor, John Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies, 61, Princeton University Press, 1968

[57] Álvarez de Morales, María; Fernández, Lidia; Pérez, Teresa E.; Piñar, Miguel A. A matrix Rodrigues formula for classical orthogonal polynomials in two variables, J. Approx. Theory, Volume 157 (2009) no. 1, pp. 32-52 | DOI | MR | Zbl

[58] Nikiforov, Arnold F.; Suslov, Sergei K.; Uvarov, Vasili. B. Classical orthogonal polynomials of a discrete variable, Springer Series in Computational Physics, Springer, 1991 | DOI

[59] Opdam, Eric M. Root systems and hypergeometric functions, III, IV, Compos. Math., Volume 67 (1988), p. 21-49, 191–209 | Numdam | Zbl

[60] Pontrjagin, Lev The general topological theorem of duality for closed sets, Ann. Math., Volume 35 (1934) no. 4, pp. 904-914 | DOI | MR | Zbl

[61] Privault, Nicolas Random Hermite polynomials and Girsanov identities on the Wiener space, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 13 (2010) no. 4, pp. 663-675 | DOI | MR | Zbl

[62] Rösler, Margit Generalized Hermite polynomials and the heat equation for Dunkl operators, Commun. Math. Phys., Volume 192 (1998) no. 3, pp. 519-542 | MR | Zbl

[63] Rösler, Margit Dunkl operators: Theory and applications, Orthogonal polynomials and special functions (Leuven, 2002) (Lecture Notes in Mathematics), Volume 1817, Springer, 2003 | DOI | MR | Zbl

[64] Sherman, Thomas O. The Helgason Fourier transform for compact Riemannian symmetric spaces of rank one, Acta Math., Volume 164 (1990) no. 1-2, pp. 73-144 | DOI | MR | Zbl

[65] Soukhanov, Lev On the phenomena of constant curvature in the diffusion-orthogonal polynomials (2014) (https://arxiv.org/abs/1409.5332v1)

[66] Soukhanov, Lev Diffusion-orthogonal polynomial systems of maximal weighted degree, Ann. Fac. Sci. Toulouse, Math., Volume 26 (2017) no. 2, pp. 511-518 | DOI | Numdam | MR | Zbl

[67] Sprinkhuizen-Kuyper, Ida G. Orthogonal polynomials in two variables. A further analysis of the polynomials orthogonal over a region bounded by two lines and a parabola, SIAM J. Math. Anal., Volume 7 (1976), pp. 501-518 | DOI | MR

[68] Stein, Elias M.; Weiss, Guido Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, 32, Princeton University Press, 1971

[69] Suetin, Pavel K. Orthogonal polynomials in two variables (Translated from the 1988 Russian original by E. V. Pankratiev), Analytical Methods and Special Functions, 3, Gordon and Breach Science Publishers, 1999

[70] Szegő, Gabor Orthogonal polynomials, Colloquium Publications, 23, American Mathematical Society, 1975, xiii+432 pages | MR

[71] Trèves, François Topological vector spaces, distributions and kernels, Academic Press Inc., 1967

[72] Verkley, W. T. M. A spectral model for two-dimensional incompressible fluid flow in a circular basin. I, J. Comput. Phys., Volume 136 (1997) no. 1, pp. 110-114 | MR | Zbl

[73] Verkley, W. T. M. A spectral model for two-dimensional incompressible fluid flow in a circular basin. II, J. Comput. Phys., Volume 136 (1997) no. 1, pp. 115-131 | DOI | MR | Zbl

[74] Vinet, Luc; Zhedanov, Alexei Generalized Bochner theorem: characterization of the Askey–Wilson polynomials, J. Comput. Appl. Math., Volume 211 (2008) no. 1, pp. 45-56 | DOI | MR | Zbl

[75] Walker, Robert J. Algebraic curves, Princeton Mathematical Series, 13, Princeton University Press, 1950 | MR

[76] Williams, Paul Jacobi Pseudospectral Method for Solving Optimal Control Problems, J. Guid. Control Dyn., Volume 27 (2004) no. 2, pp. 293-297 | DOI

Cité par Sources :