Ozawa showed in [21] that for any i.c.c. hyperbolic group, the associated group factor is solid. Developing a new approach that combines some methods of Peterson [29], Ozawa and Popa [27, 28], and Ozawa [25], we strengthen this result by showing that is strongly solid. Using our methods in cooperation with a cocycle superrigidity result of Ioana [12], we show that profinite actions of lattices in , , are virtually -superrigid.
Ozawa a montré dans [21] que, pour un groupe c.c.i. hyperbolique, le facteur de type associé est solide. En devéloppant une nouvelle approche, qui combine les méthodes de Peterson [29], d’Ozawa et Popa [27, 28], et d’Ozawa [25], nous renforçons ce résultat en montrant que ce facteur est fortement solide. En combinant nos méthodes avec un résultat d’Ioana de superrigidité des cocycles [12], nous prouvons que les actions des réseaux de , , sont virtuellement -superrigides.
Keywords: strong solidity, negatively curved groups, bi-exact groups
Mot clés : Forte solidité, groupes de courbure négative, groupes «bi-exacts»
@article{ASENS_2013_4_46_1_1_0, author = {Chifan, Ionut and Sinclair, Thomas}, title = {On the structural theory of~${\rm II}_1$ factors of negatively curved groups}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1--33}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 46}, number = {1}, year = {2013}, doi = {10.24033/asens.2183}, mrnumber = {3087388}, zbl = {1290.46053}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2183/} }
TY - JOUR AU - Chifan, Ionut AU - Sinclair, Thomas TI - On the structural theory of ${\rm II}_1$ factors of negatively curved groups JO - Annales scientifiques de l'École Normale Supérieure PY - 2013 SP - 1 EP - 33 VL - 46 IS - 1 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2183/ DO - 10.24033/asens.2183 LA - en ID - ASENS_2013_4_46_1_1_0 ER -
%0 Journal Article %A Chifan, Ionut %A Sinclair, Thomas %T On the structural theory of ${\rm II}_1$ factors of negatively curved groups %J Annales scientifiques de l'École Normale Supérieure %D 2013 %P 1-33 %V 46 %N 1 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2183/ %R 10.24033/asens.2183 %G en %F ASENS_2013_4_46_1_1_0
Chifan, Ionut; Sinclair, Thomas. On the structural theory of ${\rm II}_1$ factors of negatively curved groups. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 46 (2013) no. 1, pp. 1-33. doi : 10.24033/asens.2183. http://www.numdam.org/articles/10.24033/asens.2183/
[1] Indecomposability of equivalence relations generated by word hyperbolic groups, Topology 33 (1994), 785-798. | MR
,[2] Amenable groupoids, Monographies de l'enseignement mathématique 36, L'Enseignement mathématique, 2000. | MR
& ,[3] Kazhdan's property (T), New Mathematical Monographs 11, Cambridge Univ. Press, 2008. | MR
, & ,[4] -algebras and finite-dimensional approximations, Graduate Studies in Math. 88, Amer. Math. Soc., 2008. | MR
& ,[5] Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002), 219-280. | MR
& ,[6] On the structure of factors of negatively curved groups, II. Actions by product groups, preprint, 2011. | MR
, & ,[7] Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math. 96 (1989), 507-549. | MR
& ,[8] Actions of lattices in , Ergodic Theory Dynam. Systems 9 (1989), 221-237. | MR
& ,[9] Orbit equivalence rigidity, Ann. of Math. 150 (1999), 1083-1108. | MR
,[10] Injectivity and decomposition of completely bounded maps, in Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983), Lecture Notes in Math. 1132, Springer, 1985, 170-222. | MR
,[11] Amenable group actions and the Novikov conjecture, J. reine angew. Math. 519 (2000), 143-153. | MR
& ,[12] Cocycle superrigidity for profinite actions of property (T) groups, Duke Math. J. 157 (2011), 337-367. | MR
,[13] Amalgamated free products of weakly rigid factors and calculation of their symmetry groups, Acta Math. 200 (2008), 85-153. | MR
, & ,[14] Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal. 11 (2001), 807-839. | MR
,[15] Ideal bicombings for hyperbolic groups and applications, Topology 43 (2004), 1319-1344. | MR
, & ,[16] Continuous bounded cohomology of locally compact groups, Lecture Notes in Math. 1758, Springer, 2001. | MR
,[17] Cocycle superrigidity and bounded cohomology for negatively curved spaces, J. Differential Geom. 67 (2004), 395-455. | MR
& ,[18] Orbit equivalence rigidity and bounded cohomology, Ann. of Math. 164 (2006), 825-878. | MR
& ,[19] Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006). | MR
,[20] Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 691-695. | MR
,[21] Solid von Neumann algebras, Acta Math. 192 (2004), 111-117. | MR
,[22] A Kurosh-type theorem for type factors, Int. Math. Res. Not. 2006 (2006), Art. ID 97560, 21. | MR
,[23] Weak amenability of hyperbolic groups, Groups Geom. Dyn. 2 (2008), 271-280. | MR
,[24] An example of a solid von Neumann algebra, Hokkaido Math. J. 38 (2009), 557-561. | MR
,[25] Examples of groups which are not weakly amenable, Kyoto J. Math. 52 (2012), 333-344. | MR
,[26] Some prime factorization results for type factors, Invent. Math. 156 (2004), 223-234. | MR
& ,[27] On a class of factors with at most one Cartan subalgebra, Ann. of Math. 172 (2010), 713-749. | MR
& ,[28] On a class of factors with at most one Cartan subalgebra, II, Amer. J. Math. 132 (2010), 841-866. | MR
& ,[29] -rigidity in von Neumann algebras, Invent. Math. 175 (2009), 417-433. | MR
,[30] On cocycle superrigidity for Gaussian actions, Ergodic Theory Dynam. Systems 32 (2012), 249-272. | MR
& ,[31] On a class of type factors with Betti numbers invariants, Ann. of Math. 163 (2006), 809-899. | MR
,[32] Deformation and rigidity for group actions and von Neumann algebras, in International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, 445-477. | MR
,[33] On Ozawa's property for free group factors, Int. Math. Res. Not. 2007 (2007), doi: 10.1093/imrn/rnm036. | MR
,[34] On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc. 21 (2008), 981-1000. | MR
,[35] Unique Cartan decomposition for factors arising from arbitrary actions of hyperbolic groups, preprint arXiv:1201.2824.
& ,[36] Lectures on coarse geometry, University Lecture Series 31, Amer. Math. Soc., 2003. | MR
,[37] Measure equivalence rigidity and bi-exactness of groups, J. Funct. Anal. 257 (2009), 3167-3202. | MR
,[38] Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. of Math. 152 (2000), 113-182. | MR
,[39] Strong solidity of group factors from lattices in and , J. Funct. Anal. 260 (2011), 3209-3221. | MR
,[40] Low degree bounded cohomology and -invariants for negatively curved groups, Groups Geom. Dyn. 3 (2009), 343-358. | MR
,[41] Explicit computations of all finite index bimodules for a family of factors, Ann. Sci. Éc. Norm. Supér. 41 (2008), 743-788. | Numdam | MR
,[42] One-cohomology and the uniqueness of the group measure space decomposition of a factor, preprint arXiv:1012.5377. | MR
,[43] The analogues of entropy and of Fisher's information measure in free probability theory. III. The absence of Cartan subalgebras, Geom. Funct. Anal. 6 (1996), 172-199. | MR
,[44] The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000), 201-240. | MR
,Cited by Sources: