Pricing rules under asymmetric information
ESAIM: Probability and Statistics, Tome 11 (2007) , pp. 80-88.

We consider an extension of the Kyle and Back’s model [Back, Rev. Finance Stud. 5 (1992) 387-409; Kyle, Econometrica 35 (1985) 1315-1335], meaning a model for the market with a continuous time risky asset and asymmetrical information. There are three financial agents: the market maker, an insider trader (who knows a random variable V which will be revealed at final time) and a non informed agent. Here we assume that the non informed agent is strategic, namely he/she uses a utility function to optimize his/her strategy. Optimal control theory is applied to obtain a pricing rule and to prove the existence of an equilibrium price when the insider trader and the non informed agent are risk-neutral. We will show that if such an equilibrium exists, then the non informed agent’s optimal strategy is to do nothing, in other words to be non strategic.

DOI : https://doi.org/10.1051/ps:2007007
Classification : 49N30,  60H10,  93E20
Mots clés : equilibrium, optimal control, asymmetric information
@article{PS_2007__11__80_0,
     author = {Ogawa, Shigeyoshi and Pontier, Monique},
     title = {Pricing rules under asymmetric information},
     journal = {ESAIM: Probability and Statistics},
     pages = {80--88},
     publisher = {EDP-Sciences},
     volume = {11},
     year = {2007},
     doi = {10.1051/ps:2007007},
     mrnumber = {2299648},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2007007/}
}
Ogawa, Shigeyoshi; Pontier, Monique. Pricing rules under asymmetric information. ESAIM: Probability and Statistics, Tome 11 (2007) , pp. 80-88. doi : 10.1051/ps:2007007. http://www.numdam.org/articles/10.1051/ps:2007007/

[1] J. Amendinger, Martingale representation theorems for initially enlarged filtrations. Stoch. Proc. Appl. 89 (2000) 101-116. | Zbl 1045.60038

[2] J. Amendinger, P. Imkeller and M. Schweizer, Additional logarithmic utility of an insider. Stoch. Proc. Appl. 75 (1998) 263-286. | Zbl 0934.91020

[3] K. Back, Insider trading in continuous time. Rev. Financial Stud. 5 (1992) 387-409.

[4] B. Biais, T. Mariotti, G. Plantin and J.C. Rochet, Dynamic security design. Rev. Economic Stud. to appear. | MR 2308128

[5] K.H. Cho and N. EL Karoui, Insider trading and nonlinear equilibria:uniqueness: single auction case. Annales d'économie et de statistique 60 (2000) 21-41.

[6] K.H. Cho, Continuous auctions and insider trading: uniqueness and risk aversion. Finance and Stochastics 7 (2003) 47-71. | Zbl 1066.91057

[7] M. Chaleyat-Maurel and T. Jeulin, Grossissement gaussien de la filtration brownienne, in Séminaire de Calcul Stochastique 1982-83, Paris, Lect. Notes Math. 1118 (1985) 59-109. | Zbl 0575.60046

[8] N. El Karoui, Les aspects probabilistes du contrôle stochastique, in Ecole d'été de Saint Flour 1979, Lect. Notes Math. 872 (1981) 73-238. | Zbl 0472.60002

[9] H. Föllmer and P. Imkeller, Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space. Ann. Inst. Henri Poincaré 29 (1993) 569-586. | Numdam | Zbl 0796.60082

[10] W.H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control. Springer, Berlin (1975). | MR 454768 | Zbl 0323.49001

[11] A. Grorud and M. Pontier, Comment détecter le délit d'initié ? CRAS, Sér. 1 324 (1997) 1137-1142. | Zbl 0881.90040

[12] A. Grorud and M. Pontier, Insider trading in a continuous time market model. IJTAF. 1 (1998) 331-347. | Zbl 0909.90023

[13] A. Grorud and M. Pontier, Probabilité neutre au risque et asymétrie d'information. CRAS, Sér. 1 329 (1999) 1009-1014. | Zbl 0954.60035

[14] A. Grorud and M. Pontier, Asymmetrical information and incomplete markets. IJTAF. 4 (2001) 285-302.

[15] C. Hillairet, Existence of an equilibrium with discontinuous prices, asymmetric information and non trivial initial σ-fields. Math. Finance 15 (2005) 99-117. | Zbl 1109.91026

[16] J. Jacod, Grossissement initial, Hypothèse H' et Théorème de Girsanov, in Séminaire de Calcul Stochastique 1982-83, Paris, Lect. Notes Math. 1118 (1985) 15-35. | Zbl 0568.60049

[17] T. Jeulin, Semi-martingales et grossissement de filtration. Springer-Verlag (1980). | MR 604176 | Zbl 0444.60002

[18] A.S. Kyle, Continuous auctions and insider trading. Econometrica 53 (1985) 1315-1335. | Zbl 0571.90010

[19] I. Karatzas and I. Pikovsky, Anticipative portfolio optimization. Adv. Appl. Probab. 28 (1996) 1095-1122. | Zbl 0867.90013

[20] G. Lasserre, Quelques modèles d'équilibre avec asymétrie d'information. Thèse soutenue à l'université de Paris VII, le 16 décembre 2003.

[21] G. Lasserre, Asymmetric information and imperfect competition in a continuous time multivariate security model, Finance and Stochastics 8 (2004) 285-309. | Zbl 1060.91092

[22] P. Protter, Stochastic Integration and Differential Equations. Springer-Verlag (1990). | MR 1037262 | Zbl 0694.60047

[23] M. Schweizer, On the minimal martingale measure and the Föllmer-Schweizer decomposition. Stochastic Anal. Appl. 13 (1995) 573-599. | Zbl 0837.60042

[24] M. Yor, Grossissement de filtrations et absolue continuité de noyaux, in Séminaire de Calcul Stochastique 1982-83, Paris, Lect Notes Math. 1118 (1985) 6-14. | Zbl 0576.60038