A note on spectral gap and weighted Poincaré inequalities for some one-dimensional diffusions
ESAIM: Probability and Statistics, Tome 20 (2016), pp. 18-29.

We present some classical and weighted Poincaré inequalities for some one-dimensional probability measures. This work is the one-dimensional counterpart of a recent study achieved by the authors for a class of spherically symmetric probability measures in dimension larger than 2. Our strategy is based on two main ingredients: on the one hand, the optimal constant in the desired weighted Poincaré inequality has to be rewritten as the spectral gap of a convenient Markovian diffusion operator, and on the other hand we use a recent result given by the two first authors, which allows to estimate precisely this spectral gap. In particular we are able to capture its exact value for some examples.

Reçu le :
DOI : 10.1051/ps/2015019
Classification : 60J60, 39B62, 37A30
Mots clés : Spectral gap, diffusion operator, weighted Poincaré inequality
Bonnefont, Michel 1 ; Joulin, Aldéric 2 ; Ma, Yutao 3

1 Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351 cours de la Libération, 33405 Talence, France.
2 Université de Toulouse, Institut National des Sciences Appliquées, Institut de Mathématiques de Toulouse, 31077 Toulouse, France.
3 School of Mathematical Sciences & Lab. Math. Com. Sys., Beijing Normal University, 100875 Beijing, P.R. China.
@article{PS_2016__20__18_0,
     author = {Bonnefont, Michel and Joulin, Ald\'eric and Ma, Yutao},
     title = {A note on spectral gap and weighted {Poincar\'e} inequalities for some one-dimensional diffusions},
     journal = {ESAIM: Probability and Statistics},
     pages = {18--29},
     publisher = {EDP-Sciences},
     volume = {20},
     year = {2016},
     doi = {10.1051/ps/2015019},
     mrnumber = {3519678},
     zbl = {1355.60103},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2015019/}
}
TY  - JOUR
AU  - Bonnefont, Michel
AU  - Joulin, Aldéric
AU  - Ma, Yutao
TI  - A note on spectral gap and weighted Poincaré inequalities for some one-dimensional diffusions
JO  - ESAIM: Probability and Statistics
PY  - 2016
SP  - 18
EP  - 29
VL  - 20
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2015019/
DO  - 10.1051/ps/2015019
LA  - en
ID  - PS_2016__20__18_0
ER  - 
%0 Journal Article
%A Bonnefont, Michel
%A Joulin, Aldéric
%A Ma, Yutao
%T A note on spectral gap and weighted Poincaré inequalities for some one-dimensional diffusions
%J ESAIM: Probability and Statistics
%D 2016
%P 18-29
%V 20
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2015019/
%R 10.1051/ps/2015019
%G en
%F PS_2016__20__18_0
Bonnefont, Michel; Joulin, Aldéric; Ma, Yutao. A note on spectral gap and weighted Poincaré inequalities for some one-dimensional diffusions. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 18-29. doi : 10.1051/ps/2015019. http://www.numdam.org/articles/10.1051/ps/2015019/

D. Bakry, P. Cattiaux and A. Guillin, Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Func. Anal. 254 (2008) 727–759. | DOI | MR | Zbl

S.G. Bobkov and M. Ledoux, Weighted Poincaré-type inequalities for Cauchy and other convex measures. Ann. Probab. 37 (2009) 403–427. | DOI | MR | Zbl

M. Bonnefont and A. Joulin, Intertwining relations for one-dimensional diffusions and application to functional inequalities. Pot. Anal. 41 (2014) 1005–1031. | DOI | MR | Zbl

M. Bonnefont, A. Joulin and Y. Ma, Spectral gap for spherically symmetric log-concave probability measures, and beyond. Preprint arXiv:1406.4621 (2014). | MR

H.J. Brascamp and E.H. Lieb, On extensions of the Brunn–Minkovski and Prékopa–Leindler theorems, including inequalities for log-concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 (1976) 366–389. | DOI | MR | Zbl

P. Cattiaux, N. Gozlan, A. Guillin and C. Roberto, Functional inequalities for heavy tailed distributions and application to isoperimetry. Electronic J. Prob. 15 (2010) 346–385. | DOI | MR | Zbl

M.F. Chen, Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci. China Ser. A 42 (1999) 805–815. | DOI | MR | Zbl

M.F. Chen, Eigenvalues, Inequalities, and Ergodic Theory. Probability and its Applications. Springer-Verlag London, Ltd., London (2005). | MR | Zbl

M.F. Chen and F.Y. Wang, Estimation of spectral gap for elliptic operators. Trans. Amer. Math. Soc. 349 (1997) 1239–1267. | DOI | MR | Zbl

H. Djellout and L. Wu, Lipschitzian norm estimate of one-dimensional Poisson equations and applications. Ann. Inst. Henri Poincaré Probab. Statist. 47 (2011) 450–465. | DOI | Numdam | MR | Zbl

N. Gozlan, Poincaré inequalities and dimension free concentration of measure. Ann. Inst. Henri Poincaré Probab. Statist. 46 (2010) 708–739. | DOI | Numdam | MR | Zbl

D. Kershaw, Some extensions of W. Gautschi’s inequalities for the gamma function. Math. Comp. 41 (1983) 607–611. | MR | Zbl

M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities. Séminaire de Probabilités, XXXIII, 120-216, Vol. 1709 of Lect. Notes Math. Springer, Berlin (1999). | Numdam | MR | Zbl

M. Ledoux, Spectral gap, logarithmic Sobolev constant, and geometric bounds. Surv. Differ. Geom., IX, Int. Press, Somerville, MA (2004) 219-240. | MR | Zbl

L. Miclo, Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite? Ann. Fac. Sci. Toulouse Math. 17 (2008) 121–192. | DOI | Numdam | MR | Zbl

B. Muckenhoupt, Hardy’s inequality with weights. Stud. Math. 44 (1972) 31–38. | DOI | MR | Zbl

Cité par Sources :