Carthaginian enlargement of filtrations
ESAIM: Probability and Statistics, Tome 17 (2013) , pp. 550-566.

This work is concerned with the theory of initial and progressive enlargements of a reference filtration 𝔽 F with a random time τ. We provide, under an equivalence assumption, slightly stronger than the absolute continuity assumption of Jacod, alternative proofs to results concerning canonical decomposition of an 𝔽 F -martingale in the enlarged filtrations. Also, we address martingales’ characterization in the enlarged filtrations in terms of martingales in the reference filtration, as well as predictable representation theorems in the enlarged filtrations.

DOI : https://doi.org/10.1051/ps/2011162
Classification : 60G46,  60-02
Mots clés : initial and progressive enlargements of filtrations, predictable projection, canonical decomposition of semimartingales, predictable representation theorem
@article{PS_2013__17__550_0,
     author = {Callegaro, Giorgia and Jeanblanc, Monique and Zargari, Behnaz},
     title = {Carthaginian enlargement of filtrations},
     journal = {ESAIM: Probability and Statistics},
     pages = {550--566},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2011162},
     zbl = {1296.60106},
     mrnumber = {3085632},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2011162/}
}
Callegaro, Giorgia; Jeanblanc, Monique; Zargari, Behnaz. Carthaginian enlargement of filtrations. ESAIM: Probability and Statistics, Tome 17 (2013) , pp. 550-566. doi : 10.1051/ps/2011162. http://www.numdam.org/articles/10.1051/ps/2011162/

[1] J. Amendinger, Initial Enlargement of Filtrations and Additional Information in Financial Markets. Ph.D. thesis, Technischen Universität Berlin (1999). | Zbl 0936.91022

[2] S. Ankirchner, S. Dereich and P. Imkeller, Elargement of filtrations, continuous Girsanov-type embeddings, Séminaire de probabilités XL (2007) 389-410. | MR 2409018 | Zbl 1155.60017

[3] J. Azéma, Quelques applications de la théorie générale des processus, Invent. Math. 18 (1972). 293-336. | MR 326848 | Zbl 0268.60068

[4] M.T. Barlow, Study of filtration expanded to include an honest time. Z. Wahr. Verw. Gebiete 44 (1978) 307-323. | MR 509204 | Zbl 0369.60047

[5] T.R. Bielecki, M. Jeanblanc and M. Rutkowski, Credit Risk Modeling. CSFI Lect. Note Series. Osaka University Press (2009). | Zbl 1107.91351

[6] P. Brémaud, Point Processes and Queues: Martingale Dynamics. Springer-Verlag (1981). | MR 636252 | Zbl 0478.60004

[7] C.S. Chou and P.-A. Meyer, Sur la représentation des martingales comme intégrales stochastiques dans les processus ponctuels. Séminaire de probabilités IX (1975) 226-236. | Numdam | MR 436310 | Zbl 0326.60065

[8] C. Dellacherie and P.-A. Meyer, Probabilités et Potentiel - Chapitres XXVII à XXIV, Processus de Markov. Hermann, Paris (1992). | Zbl 0138.10402

[9] N. El Karoui, M. Jeanblanc and Y. Jiao, What happens after a default: the conditional density approach. Stoch. Proc. Appl. 120 (2010) 1011-1032. | MR 2639736 | Zbl 1194.91187

[10] H. Föllmer and P. Imkeller, Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space. Ann. Inst. Henri Poincaré 29 (1993) 569-586. | Numdam | MR 1251141 | Zbl 0796.60082

[11] D. Gasbarra, E. Valkeila and L. Vostrikova, Enlargement of filtration and additional information in pricing models: Bayesian approach, in From Stochastic Calculus to Mathematical Finance, edited by Y. Kabanov, R. Liptser and J. Stoyanov. Springer-Verlag (2006) 257-285. | MR 2233544 | Zbl 1101.62101

[12] A. Grorud and M. Pontier, Insider trading in a continuous time market model. Int. J. Theor. Appl. Finance 1 (1998) 331-347. | Zbl 0909.90023

[13] A. Grorud and M. Pontier, Asymmetrical information and incomplete markets. Int. J. Theor. Appl. Finance 4 (2001) 285-302. | MR 1831271 | Zbl 1154.91542

[14] Sh. He, J. Wang and J. Yan, Semimartingale theory and stochastic calculus. CRC Press (1992). | MR 1219534 | Zbl 0781.60002

[15] J. Jacod, Grossissement initial, hypothèse (H′) et théorème de Girsanov, Lect. Notes Math., vol. 1118. Springer-Verlag (1985) 15-35. | Zbl 0568.60049

[16] M. Jeanblanc and Y. Le Cam, Progressive enlargement of filtrations with initial times. Stoch. Proc. Appl. 119 (2009) 2523-2543. | MR 2532211 | Zbl 1175.60041

[17] M. Jeanblanc and Y. Le Cam, Immersion Property and Credit Risk Modelling, in Optimality and Risk - Modern Trends in Mathematical Finance, edited by F. Delbaen, M. Rásonyi and C. Stricker. Springer (2010) 99-132. | MR 2648600 | Zbl 1195.60066

[18] M. Jeanblanc, M. Yor and M. Chesney, Mathematical Methods in Financial Markets. Springer (2009). | Zbl 1205.91003

[19] T. Jeulin, Semimartingales et grossissement d'une filtration, Lect. Notes Math., vol. 833. Springer-Verlag (1980). | MR 604176 | Zbl 0444.60002

[20] Y. Kchia, M. Larsson and P. Protter, Linking progressive and initial filtration expansions, Working paper.

[21] S. Kusuoka, A remark on default risk models, Adv. Math. Econ. 1 (1999) 69-82. | MR 1722700 | Zbl 0939.60023

[22] Sh. Song, Grossissement de filtration et problèmes connexes. Ph.D. thesis, Université Paris VI (1987).

[23] C. Stricker, Quasi-martingales, martingales locales et filtrations naturelles. Zeitschrift fur Wahr 39 (1977) 55-63. | MR 471072 | Zbl 0362.60069

[24] C. Stricker and M. Yor, Calcul stochastique dépendant d'un paramètre. Zeitschrift fur Wahr 45 (1978) 109-133. | MR 510530 | Zbl 0388.60056

[25] M. Yor, Grossissement de filtrations et absolue continuité de noyaux, Lect. Notes Math., vol. 1118. Springer-Verlag (1985) 7-14. | MR 884713 | Zbl 0576.60038