An a posteriori error analysis for an optimal control problem with point sources
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 1617-1650.

We propose and analyze a reliable and efficient a posteriori error estimator for a control-constrained linear-quadratic optimal control problem involving Dirac measures; the control variable corresponds to the amplitude of forces modeled as point sources. The proposed a posteriori error estimator is defined as the sum of two contributions, which are associated with the state and adjoint equations. The estimator associated with the state equation is based on Muckenhoupt weighted Sobolev spaces, while the one associated with the adjoint is in the maximum norm and allows for unbounded right hand sides. The analysis is valid for two and three-dimensional domains. On the basis of the devised a posteriori error estimator, we design a simple adaptive strategy that yields optimal rates of convergence for the numerical examples that we perform.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018010
Classification : 49J20, 49M25, 65K10, 65N15, 65N30, 65Y20
Mots clés : Linear-quadratic optimal control problem, Dirac measures, a posteriori error analysis, adaptive finite elements, maximum norm, Muckenhoupt weights, weighted Sobolev spaces
Allendes, Alejandro 1 ; Otárola, Enrique 1 ; Rankin, Richard 1 ; Salgado, Abner J. 1

1
@article{M2AN_2018__52_5_1617_0,
     author = {Allendes, Alejandro and Ot\'arola, Enrique and Rankin, Richard and Salgado, Abner J.},
     title = {An a posteriori error analysis for an optimal control problem with point sources},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1617--1650},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {5},
     year = {2018},
     doi = {10.1051/m2an/2018010},
     zbl = {1415.49002},
     mrnumber = {3878607},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018010/}
}
TY  - JOUR
AU  - Allendes, Alejandro
AU  - Otárola, Enrique
AU  - Rankin, Richard
AU  - Salgado, Abner J.
TI  - An a posteriori error analysis for an optimal control problem with point sources
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1617
EP  - 1650
VL  - 52
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018010/
DO  - 10.1051/m2an/2018010
LA  - en
ID  - M2AN_2018__52_5_1617_0
ER  - 
%0 Journal Article
%A Allendes, Alejandro
%A Otárola, Enrique
%A Rankin, Richard
%A Salgado, Abner J.
%T An a posteriori error analysis for an optimal control problem with point sources
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1617-1650
%V 52
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018010/
%R 10.1051/m2an/2018010
%G en
%F M2AN_2018__52_5_1617_0
Allendes, Alejandro; Otárola, Enrique; Rankin, Richard; Salgado, Abner J. An a posteriori error analysis for an optimal control problem with point sources. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 1617-1650. doi : 10.1051/m2an/2018010. http://www.numdam.org/articles/10.1051/m2an/2018010/

[1] J.P. Agnelli, E.M. Garau and P. Morin, A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces. ESAIM: M2AN 48 (2014) 1557–1581. | DOI | MR | Zbl

[2] H. Aimar, M. Carena, R. Durán and M. Toschi, Powers of distances to lower dimensional sets as Muckenhoupt weights. Acta Math. Hungar. 143 (2014) 119–137. | DOI | MR | Zbl

[3] M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience, New York (2000). | MR | Zbl

[4] A. Allendes, E. Otárola, R. Rankin and A.J. Salgado, Adaptive finite element methods for an optimal control problem involving Dirac measures. Numer. Math. 137 (2017) 159–197. | DOI | MR | Zbl

[5] P.R. Amestoy, I.S. Duff and J.-Y. L’Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184 (2000) 501–520. | DOI | Zbl

[6] P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23 (2001) 15–41. | DOI | MR | Zbl

[7] H. Antil, E. Otárola and A.J. Salgado, Some applications of weighted norm inequalities to the analysis of optimal control problems. IMA J. Numer. Anal. 38 (2017) 852–883. | DOI | MR | Zbl

[8] T. Apel, O. Benedix, D Sirch and B. Vexler, A priori mesh grading for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 49 (2011) 992–1005. | DOI | MR | Zbl

[9] F. Camacho and A. Demlow, L2 and pointwise a posteriori error estimates for fem for elliptic PDEs on surfaces. IMA J. Numer. Anal. 35 (2015) 1199–1227. | DOI | MR | Zbl

[10] E. Casas, L2 estimatesfor the finite element method for the Dirichlet problem with singular data. Numer. Math. 47 (1985) 627–632. | DOI | MR | Zbl

[11] E. Dari, R.G. Durán and C. Padra, Maximum norm error estimators for three-dimensional elliptic problems. SIAM J. Numer. Anal. 37 (2000) 683–700. | DOI | MR | Zbl

[12] M. Dauge, Neumann and mixed problems on curvilinear polyhedra. Integr. Equ. Oper. Theory 15 (1992) 227–261. | DOI | MR | Zbl

[13] A. Demlow and E.H. Georgoulis, Pointwise a posteriori error control for discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 50 (2012) 2159–2181. | DOI | MR | Zbl

[14] A. Demlow and N. Kopteva, Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems. Numer. Math. 133 (2016) 707–742. | DOI | MR | Zbl

[15] J. Duoandikoetxea, Fourier Analysis. Vol. 29 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2001). | MR | Zbl

[16] R. Durán and I. Ojea, A weighted setting for the Poisson problem with singular sources (in preparation).

[17] K. Eriksson, An adaptive finite element method with efficient maximum norm error control for elliptic problems. Math. Models Methods Appl. Sci. 4 (1994) 313–329. | DOI | MR | Zbl

[18] E.B. Fabes, C.E. Kenig and R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7 (1982) 77–116. | DOI | MR | Zbl

[19] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin (2001). | MR | Zbl

[20] V. Gol’Dshtein and A. Ukhlov, Weighted Sobolev spaces and embedding theorems. Reprint of the 1998 edition. Trans. Am. Math. Soc. 361 (2009) 3829–3850. | DOI | MR | Zbl

[21] W. Gong, G. Wang and N. Yan, Approximations of elliptic optimal control problems with controls acting on a lower dimensional manifold. SIAM J. Control Optim. 52 (2014) 2008–2035. | DOI | MR | Zbl

[22] L. Grafakos, Modern Fourier Analysis, 3rd edn. Vol. 250 of Graduate Texts in Mathematics. Springer, New York (2014). | MR | Zbl

[23] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Reprint of the 1985 original [MR0775683], With a foreword by Susanne C. Brenner. Vol. 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). | MR | Zbl

[24] M. Grüter and K.-O. Widman, The Green function for uniformly elliptic equations. Manuscr. Math. 37 (1982) 303–342. | DOI | MR | Zbl

[25] M. Hintermüller, R.H.W. Hoppe, Y. Iliash and M. Kieweg, An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM: COCV 14 (2008) 540–560. | Numdam | MR | Zbl

[26] S. Hofmann and S. Kim, The Green function estimates for strongly elliptic systems of second order. Manuscr. Math. 124 (2007) 139–172. | DOI | MR | Zbl

[27] D.S. Jerison and C.E. Kenig, The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. (N.S.) 4 (1981) 203–207. | DOI | MR | Zbl

[28] D. Jerison and C.E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995) 161–219. | DOI | MR | Zbl

[29] J. Jost, Partial Differential Equations, 3rd edn. Vol. 214 of Graduate Texts in Mathematics. Springer, New York (2013). | MR | Zbl

[30] K. Kohls,A. Rösch and K.G. Siebert, A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52 (2014) 1832–1861. | DOI | MR | Zbl

[31] T. Köppl and B. Wohlmuth, Optimal a priori error estimates for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 52 (2014) 1753–1769. | DOI | MR | Zbl

[32] V.A Kozlov, V.G Maz’Ya and J. Rossmann, Elliptic Boundary Value Problems in Domains With Point Singularities. American Mathematical Society, Providence, RI, USA (1997). | Zbl

[33] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Translated from the French by S.K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170. Springer-Verlag, New York-Berlin (1971). | MR | Zbl

[34] W. Liu and N. Yan, A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15 (2001) 285–309. | DOI | MR | Zbl

[35] V. Maz’Ya and J. Rossmann, Elliptic Equations in Polyhedral Domains. Vol. 162 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2010). | DOI | MR | Zbl

[36] D. Mitrea and I. Mitrea, On the regularity of Green functions in Lipschitz domains. Commun. Partial Differ. Equ. 36 (2011) 304–327. | DOI | MR | Zbl

[37] P. Morin, R.H. Nochetto and K.G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466–488 (electronic). | DOI | MR | Zbl

[38] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165 (1972) 207–226. | DOI | MR | Zbl

[39] R.H. Nochetto, Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comput. 64 (1995) 1–22. | DOI | MR | Zbl

[40] R.H. Nochetto and A. Vesser, Primer of adaptive finite element methods, in Multiscale and Adaptivity: Modeling, Numerics and Applications. CIME Lectures. Springer (2011). | MR | Zbl

[41] R.H. Nochetto, G.K. Siebert and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2002) 163–195. | DOI | MR | Zbl

[42] R.H. Nochetto, A. Schmidt, K.G. Siebert and A. Veeser, Pointwise a posteriori error estimates for monotone semi-linear equations. Numer. Math. 104 (2006) 515–538. | DOI | MR | Zbl

[43] R.H. Nochetto, K.G. Siebert and A. Veeser, Theory of adaptive finite element methods: an introduction, in Multiscale, Nonlinear and Adaptive Approximation. Springer (2009). | DOI | MR | Zbl

[44] R.H. Nochetto, E. Otárola and A.J. Salgado, Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications. Numer. Math. 132 (2016) 85–130. | DOI | MR | Zbl

[45] E. Otárola and A.J. Salgado, The Poisson and Stokes Problems in Nonconvex, Lipschitz Polytopes. Preprint (2017). | arXiv

[46] G. Savaré, Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152 (1998) 176–201. | DOI | MR | Zbl

[47] R. Schneider and G. Wachsmuth, A posteriori error estimation for control-constrained, linear-quadratic optimal control problems. SIAM J. Numer. Anal. 54 (2016) 1169–1192. | DOI | MR | Zbl

[48] L.R. Scott, Finite element convergence for singular data. Numer. Math. 21 (1973/74) 317–327. | DOI | MR | Zbl

[49] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | DOI | MR | Zbl

[50] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Translated from the 2005 German original by Jürgen Sprekels. Vol. 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). | DOI | MR | Zbl

[51] B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces. Springer (2000). | DOI | MR | Zbl

[52] R. Verfürth, A posteriori error estimators for the Stokes equations. Numer. Math. 55 (1989) 309–325. | DOI | MR | Zbl

[53] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). | MR | Zbl

Cité par Sources :