A virtual element method for the vibration problem of Kirchhoff plates
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1437-1456.

The aim of this paper is to develop a virtual element method (VEM) for the vibration problem of thin plates on polygonal meshes. We consider a variational formulation relying only on the transverse displacement of the plate and propose an H2(Ω) conforming discretization by means of the VEM which is simple in terms of degrees of freedom and coding aspects. Under standard assumptions on the computational domain, we establish that the resulting scheme provides a correct approximation of the spectrum and prove optimal order error estimates for the eigenfunctions and a double order for the eigenvalues. Finally, we report several numerical experiments illustrating the behaviour of the proposed scheme and confirming our theoretical results on different families of meshes. Additional examples of cases not covered by our theory are also presented.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017041
Classification : 65N25, 65N30, 74K20
Mots clés : Virtual element method, Kirchhoff plates, spectral problem, error estimates
Mora, David 1 ; Rivera, Gonzalo 2 ; Velásquez, Iván 3

1 GIMNAP, Departamento de Matemática, Universidad del Bío-Bío, Casilla 5-C, Concepción, Chile, and Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción, Concepción, Chile
2 Departamento de Ciencias Exactas, Universidad de Los Lagos, Casilla 933, Osorno, Chile
3 Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile, and Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción, Concepción, Chile
@article{M2AN_2018__52_4_1437_0,
     author = {Mora, David and Rivera, Gonzalo and Vel\'asquez, Iv\'an},
     title = {A virtual element method for the vibration problem of {Kirchhoff} plates},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1437--1456},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4},
     year = {2018},
     doi = {10.1051/m2an/2017041},
     mrnumber = {3875292},
     zbl = {1407.65274},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017041/}
}
TY  - JOUR
AU  - Mora, David
AU  - Rivera, Gonzalo
AU  - Velásquez, Iván
TI  - A virtual element method for the vibration problem of Kirchhoff plates
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1437
EP  - 1456
VL  - 52
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017041/
DO  - 10.1051/m2an/2017041
LA  - en
ID  - M2AN_2018__52_4_1437_0
ER  - 
%0 Journal Article
%A Mora, David
%A Rivera, Gonzalo
%A Velásquez, Iván
%T A virtual element method for the vibration problem of Kirchhoff plates
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1437-1456
%V 52
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017041/
%R 10.1051/m2an/2017041
%G en
%F M2AN_2018__52_4_1437_0
Mora, David; Rivera, Gonzalo; Velásquez, Iván. A virtual element method for the vibration problem of Kirchhoff plates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1437-1456. doi : 10.1051/m2an/2017041. http://www.numdam.org/articles/10.1051/m2an/2017041/

[1] B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini and A. Russo, Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. | DOI | MR | Zbl

[2] A.B. Andreev, R.D. Lazarov and M.R. Racheva, Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems. J. Comput. Appl. Math. 182 (2005) 333–349. | DOI | MR | Zbl

[3] P.F. Antonietti, L. Beir˜Ao Da Veiga, S. Scacchi and M. Verani, A C1 virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. | DOI | MR | Zbl

[4] I. Babuška and J. Osborn, Eigenvalue problems, in Vol. II of Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.L. Lions. North-Holland, Amsterdam (1991), 641–787. | DOI | MR | Zbl

[5] L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl

[6] L. Beirão Da Veiga, F. Brezzi, L. D. Marini and A. Russo, The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | DOI | MR | Zbl

[7] L. Beirão Da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557. | DOI | MR | Zbl

[8] L. Beirão Da Veiga, C. Lovadina and D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295 (2015) 327–346. | DOI | MR | Zbl

[9] L. Beirão Da Veiga and G. Manzini, A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34 (2014) 759–781. | DOI | MR | Zbl

[10] L. Beirão Da Veiga, D. Mora and G. Rivera, Virtual Elements for a shear-deflection formulation of Reissner-Mindlin plates. To appear in: Math. Comp. Doi: (2018). | DOI | MR | Zbl

[11] L. Beirão Da Veiga, D. Mora, G. Rivera and R. Rodríguez, A virtual element method for the acoustic vibration problem. Numer. Math. 136 (2017) 725–763. | DOI | MR | Zbl

[12] D. Boffi, Finite element approximation of eigenvalue problems. Acta Num. 19 (2010) 1–120. | DOI | MR | Zbl

[13] D. Boffi, F. Gardini and L. Gastaldi, Some remarks on eigenvalue approximation by finite elements, in Frontiers in Numerical Analysis–Durham 2010. Lect. Notes Comput. Sci. Eng. 85 (2012) 1–77. | MR | Zbl

[14] S.C. Brenner, P. Monk and J. Sun, C0 interior penalty Galerkin method for biharmonic eigenvalue problems, in Spectral and High Order Methods for Partial Differential Equations. Lect. Notes Comput. Sci. Eng. 106 (2015) 3–15. | DOI | MR

[15] S.C. Brenner and R.L. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York (2008). | DOI | MR | Zbl

[16] F. Brezzi and L.D. Marini, Virtual elements for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | DOI | MR | Zbl

[17] E. Caceres and G.N. Gatica, A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37 (2017) 296–331. | DOI | MR | Zbl

[18] A. Cangiani, E.H. Georgoulis and P. Houston, hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24 (2014) 2009–2041. | DOI | MR | Zbl

[19] A. Cangiani, G. Manzini and O.J. Sutton, Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. | MR | Zbl

[20] C. Canuto, Eigenvalue approximations by mixed methods. RAIRO Anal. Numér. 12 (1978) 27–50. | DOI | Numdam | MR | Zbl

[21] C. Chinosi and L.D. Marini, Virtual element method for fourth order problems: L2-estimates. Comput. Math. Appl. 72 (2016) 1959–1967. | DOI | MR | Zbl

[22] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. SIAM (2002). | MR

[23] J. Descloux, N. Nassif, and J. Rappaz, On spectral approximation. Part 1: The problem of convergence. RAIRO Anal. Numér. 12 (1978) 97–112. | DOI | Numdam | MR | Zbl

[24] J. Descloux, N. Nassif, and J. Rappaz, On spectral approximation. Part 2: Error estimates for the Galerkin method. RAIRO Anal. Numér. 12 (1978) 113–119. | DOI | Numdam | MR | Zbl

[25] D. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283 (2015) 1–21. | DOI | MR | Zbl

[26] A.L. Gain, C. Talischi and G.H. Paulino, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282 (2014) 132–160. | DOI | MR | Zbl

[27] F. Gardini and G. Vacca, Virtual element method for second order elliptic eigenvalue problems. Preprint arXiv:1610.03675 [math.NA] (2016). | MR

[28] V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, 1986. | DOI | MR | Zbl

[29] P. Grisvard, Elliptic Problems in Non-Smooth Domains. Pitman, Boston (1985). | MR | Zbl

[30] B. Mercier, J. Osborn, J. Rappaz, and P. A. Raviart, Eigenvalue approximation by mixed and hybrid methods. Math. Comp. 36 (1981) 427–453. | DOI | MR | Zbl

[31] D. Mora, G. Rivera and R. Rodríguez, A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25 (2015) 1421–1445. | DOI | MR | Zbl

[32] D. Mora and R. Rodríguez, A piecewise linear finite element method for the buckling and the vibration problems of thin plates. Math. Comp. 78 (2009) 1891–1917. | DOI | MR | Zbl

[33] G.H. Paulino and A.L. Gain, Bridging art and engineering using Escher-based virtual elements. Struct. Multidiscip. Optim. 51 (2015) 867–883. | DOI | MR

[34] R. Rannacher, Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33 (1979) 23–42. | DOI | MR | Zbl

[35] N. Sukumar and A. Tabarraei, Conforming polygonal finite elements. Internat. J. Numer. Methods Eng. 61 (2004) 2045–2066. | DOI | MR | Zbl

[36] C. Talischi, G.H. Paulino, A. Pereira and I.F.M. Menezes, Polygonal finite elements for topology optimization: A unifying paradigm. Int. J. Numer. Methods Eng. 82 (2010) 671–698. | DOI | Zbl

[37] P. Wriggers, W.T. Rust and B.D. Reddy, A virtual element method for contact. Comput. Mech. 58 (2016) 1039–1050. | DOI | MR | Zbl

Cité par Sources :