Coriolis effect on water waves
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1957-1985.

This paper is devoted to the study of water waves under the influence of the gravity and the Coriolis force. It is quite common in the physical literature that the rotating shallow water equations are used to study such water waves. We prove a local wellposedness theorem for the water waves equations with vorticity and Coriolis force, taking into account the dependence on various physical parameters and we justify rigorously the shallow water model. We also consider a possible non constant pressure at the surface that can be used to describe meteorological disturbances such as storms or pressure jumps for instance.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017024
Classification : 35Q35, 76B15
Mots clés : Water waves equations, quasilinear hyperbolic system, asymptotic models, shallow water asymptotic
Melinand, Benjamin 1

1 IMB, Université de Bordeaux, France.
@article{M2AN_2017__51_5_1957_0,
     author = {Melinand, Benjamin},
     title = {Coriolis effect on water waves},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1957--1985},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {5},
     year = {2017},
     doi = {10.1051/m2an/2017024},
     mrnumber = {3731556},
     zbl = {1382.35232},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017024/}
}
TY  - JOUR
AU  - Melinand, Benjamin
TI  - Coriolis effect on water waves
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1957
EP  - 1985
VL  - 51
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017024/
DO  - 10.1051/m2an/2017024
LA  - en
ID  - M2AN_2017__51_5_1957_0
ER  - 
%0 Journal Article
%A Melinand, Benjamin
%T Coriolis effect on water waves
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1957-1985
%V 51
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017024/
%R 10.1051/m2an/2017024
%G en
%F M2AN_2017__51_5_1957_0
Melinand, Benjamin. Coriolis effect on water waves. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1957-1985. doi : 10.1051/m2an/2017024. http://www.numdam.org/articles/10.1051/m2an/2017024/

T. Alazard, N. Burq and C. Zuily, The water-wave equations: from Zakharov to Euler. Studies in phase space analysis with applications to PDEs. in vol. 84 of Progr. Nonlinear Differ. Equ. Appl. Birkhäuser/Springer, New York (2013) 1–20. | MR | Zbl

T. Alazard and G. Métivier, Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves. Commun. Partial Differ. Equ. 34 (2009) 1632–1704. | DOI | MR | Zbl

S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser. Savoirs Actuels. [Current Scholarship]. InterEditions, Paris; Éditions du Centre National de la Recherche Scientifique (CNRS), Meudon (1991). | MR | Zbl

B. Alvarez−Samaniego and D. Lannes, Large time existence for 3D water-waves and asymptotics. Invent. Math. 171 (2008) 485–541. | DOI | MR | Zbl

D. Bresch, Shallow-water equations and related topics. Handbook of differential equations: evolutionary equations. In Vol. V of Handb. Differ. Equ. Elsevier North-Holland, Amsterdam (2009) 1–104 | MR | Zbl

B. Buffoni, M.D. Groves, S.M. Sun and E. Wahlén, Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves. J. Differ. Equ. 254 (2013) 1006–1096. | DOI | MR | Zbl

A. Castro and D. Lannes, Fully nonlinear long-wave models in the presence of vorticity. J. Fluid Mech. 759 (2014) 642–675. | DOI | MR | Zbl

A. Castro and D. Lannes, Well-posedness and shallow-water stability for a new Hamiltonian formulation of the water waves equations with vorticity. Indiana Univ. Math. J. 64 (2015) 1169–1270. | DOI | MR | Zbl

D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Amer. Math. Soc. 20 (2007) 829–930. | DOI | MR | Zbl

W. Craig, An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differ. Equ. 10 (1985) 787–1003. | DOI | MR | Zbl

W. Craig and C. Sulem, Numerical simulation of gravity waves. J. Comput. Phys. 108 (1993) 73–83. | DOI | MR | Zbl

W. Craig, C. Sulem and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach. Nonlinearity 5 (1992) 497–522. | DOI | MR | Zbl

R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Spectre des opérateurs. [The operator spectrum]. With the collaboration of Michel Artola, Michel Cessenat, Jean Michel Combes and Bruno Scheurer, Reprinted from the 1984 edition. In Vol. 5 of INSTN: Collection Enseignement. [INSTN: Teaching Collection]. Masson, Paris (1988). | MR

J. Deny and J.L. Lions, Les espaces du type de Beppo Levi. Ann. Inst. Fourier, Grenoble 5 (1955) 305–370 (1954). | DOI | Numdam | MR | Zbl

D.G. Ebin, The equations of motion of a perfect fluid with free boundary are not well posed. Comm. Partial Differ. Equ. 12 (1987) 1175–1201. | DOI | MR | Zbl

T. Iguchi, A shallow water approximation for water waves. J. Math. Kyoto Univ. 49 (2009) 13–55. | MR | Zbl

D. Lannes, Well-posedness of the water-waves equations. J. Amer. Math. Soc. 18 (2005) 605–654. | DOI | MR | Zbl

D. Lannes, Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators. J. Funct. Anal. 232 (2006) 495–539. | DOI | MR | Zbl

D. Lannes, The water waves problem, Vol. 188 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2013). Mathematical analysis and asymptotics. | MR | Zbl

H. Lindblad, Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162 (2005) 109–194. | DOI | MR | Zbl

A. Majda, Introduction to PDEs and waves for the atmosphere and ocean, vol. 9 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2003). | MR | Zbl

N. Masmoudi and F. Rousset, Uniform regularity and vanishing viscosity limit for the free surface navier-stokes equations. Submitted, arXiv: 1202.0657 (2013). | MR

B. Mélinand, A mathematical study of meteo and landslide tsunamis: The proudman resonance. Nonlinearity 28 (2015) 4037–4080. | DOI | MR | Zbl

B. Mélinand, Long wave approximation for water waves under a coriolis forcing and the ostrovsy equation. Proc. R. Soc. Edinb., Sect. A, Math.,To appear (2016). | MR

J. Pedlosky, Geophysical Fluid Dynamics. Springer study edition. Springer New York (1992). | Zbl

G. L. Richard and S.L. Gavrilyuk, A new model of roll waves: comparison with Brock’s experiments. J. Fluid Mech. 698 (2012) 374–405. | DOI | MR | Zbl

G. Schneider and C.E. Wayne, Justification of the NLS approximation for a quasilinear water wave model. J. Differ. Equ. 251 (2011) 238–269. | DOI | MR | Zbl

G. Schneider and C.E. Wayne, Corrigendum: The long-wave limit for the water wave problem I. The case of zero surface tension [mr1780702]. Comm. Pure Appl. Math. 65 (2012) 587–591. | DOI | MR | Zbl

G. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. Roy. Soc. London. Ser. A. 201 (1950) 192–196. | DOI | MR | Zbl

V.M. Teshukov, Gas-dynamic analogy for vortex free-boundary flows. J. Appl. Mecha. Tech. Phys. 48 (2007) 303–309. | DOI | MR | Zbl

I. Vilibic, Numerical simulations of the proudman resonance. Continental Shelf Res. 28 (2008) 574–581. | DOI

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130 (1997) 39–72. | DOI | MR | Zbl

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc. 12 (1999) 445–495. | DOI | MR | Zbl

V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9 (1968) 190–194. | DOI

Cité par Sources :