Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of Schrödinger type
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1859-1882.

The convergence behaviour of multi-revolution composition methods combined with time-splitting methods is analysed for highly oscillatory linear differential equations of Schrödinger type. Numerical experiments illustrate and complement the theoretical investigations.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017010
Classification : 34K33, 34G10, 35Q41, 65M12, 65N15
Mots clés : Highly oscillatory differential equations, time-dependent Schrödinger equations, multi-revolution composition methods, operator splitting methods, local error, convergence
Chartier, Philippe 1 ; Méhats, Florian 2 ; Thalhammer, Mechthild 3 ; Zhang, Yong 4

1 INRIA-Rennes, IRMAR, ENS Rennes, Campus de Beaulieu, 35042 Rennes cedex, France.
2 Université de Rennes 1, INRIA-Rennes, IRMAR, Campus de Beaulieu, 35042 Rennes cedex, France.
3 Leopold–Franzens Universität Innsbruck, Institut für Mathematik, Technikerstraße 13/VII, 6020 Innsbruck, Austria.
4 Wolfgang Pauli Institut c/o Universität Wien, Fakultät für Mathematik, Oskar–Morgenstern–Platz 1, 1090 Wien, Austria.
@article{M2AN_2017__51_5_1859_0,
     author = {Chartier, Philippe and M\'ehats, Florian and Thalhammer, Mechthild and Zhang, Yong},
     title = {Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of {Schr\"odinger} type},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1859--1882},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {5},
     year = {2017},
     doi = {10.1051/m2an/2017010},
     zbl = {1421.65011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017010/}
}
TY  - JOUR
AU  - Chartier, Philippe
AU  - Méhats, Florian
AU  - Thalhammer, Mechthild
AU  - Zhang, Yong
TI  - Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of Schrödinger type
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1859
EP  - 1882
VL  - 51
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017010/
DO  - 10.1051/m2an/2017010
LA  - en
ID  - M2AN_2017__51_5_1859_0
ER  - 
%0 Journal Article
%A Chartier, Philippe
%A Méhats, Florian
%A Thalhammer, Mechthild
%A Zhang, Yong
%T Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of Schrödinger type
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1859-1882
%V 51
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017010/
%R 10.1051/m2an/2017010
%G en
%F M2AN_2017__51_5_1859_0
Chartier, Philippe; Méhats, Florian; Thalhammer, Mechthild; Zhang, Yong. Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of Schrödinger type. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1859-1882. doi : 10.1051/m2an/2017010. http://www.numdam.org/articles/10.1051/m2an/2017010/

R.A. Adams, Sobolev Spaces. Academic Press, Orlando, Florida (1975). | Zbl

W. Bao, Mathematical models and numerical methods for Bose–Einstein condensation. In Vol. IV of Proc. Inter. Congress Math. Seoul (2014) 971–996.

W. Bao, P. Markowich, Ch. Schmeiser and R.M. Weishäupl, On the Gross–Pitaevski equation with strongly anisotropic confinement: formal asymptotics and numerical experiments. M3AS 15 (2005) 767–782. | Zbl

N. Ben Abdallah, F. Méhats, Ch. Schmeiser and R.M. Weishäupl, The nonlinear Schrödinger equation with strong anisotropic harmonic potential. SIAM J. Math. Anal. 37 (2005) 189–199. | DOI | Zbl

S. Blanes and P.C. Moan, Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. J. Comput. Appl. Math. 142 (2002) 313–330. | DOI | Zbl

R. Carles and E. Faou, Energy cascade for NLS on the torus. DCDS-A 32 (2012) 2063–2077. | DOI | Zbl

Ph. Chartier, J. Makazaga, A. Murua and G. Vilmart, Multi-revolution composition methods for highly oscillatory differential equations. Numer. Math. 128 (2014) 167–192. | DOI | Zbl

Ph. Chartier, F. Méhats, M. Thalhammer and Y. Zhang, Improved error estimates for splitting methods applied to highly-oscillatory nonlinear Schrödinger equations. Math. Comput. 85 (2016) 2863–2885. | DOI | Zbl

Ph. Chartier, N. Mauser, F. Méhats and Y. Zhang, Solving highly-oscillatory NLS with SAM: numerical efficiency and geometric properties. Discrete Contin. Dyn. Systems – Ser. S 9 (2016) 1327–1349. | DOI | Zbl

G. Dujardin and E. Faou, Normal form and long time analysis of splitting schemes for the linear Schrödinger equation with small potential. Numer. Math. 108 (2007) 223–262. | DOI | Zbl

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000). | Zbl

E. Faou, L. Gauckler and C. Lubich, Plane wave stability of the split-step Fourier method for the nonlinear Schrödinger equation. Forum Math. Sigma 2 (2014). Available at: | DOI | Zbl

L. Gauckler, Convergence of a split-step Hermite method for the Gross–Pitaevskii equation. IMA J. Numer. Anal. 31 (2011) 396–415. | DOI | Zbl

B. Grébert and L. Thomann, Resonant dynamics for the quintic nonlinear Schrödinger equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 29 (2012) 455–477. | DOI | Numdam | Zbl

B. Grébert and C. Villegas-Blas, On the energy exchange between resonant modes in nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 28 (2011) 127–134. | DOI | Numdam | Zbl

H. Hofstätter, O. Koch and M. Thalhammer, Convergence analysis of high-order time-splitting pseudo-spectral methods for Gross–Pitaevskii equations with rotation term. Numer. Math. 127 (2014) 315–364. | DOI | Zbl

Ch. Lubich, On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77 (2008) 2141–2153. | DOI | Zbl

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl. Math. Sci. Springer, New York 44 (1983). | Zbl

M. Thalhammer, Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal. 50 (2013) 3231–3258. | DOI | Zbl

H. Triebel, Higher Analysis. Barth, Leipzig–Berlin–Heidelberg (1992). | Zbl

G. Vilmart, Weak second order multi-revolution composition methods for highly oscillatory stochastic differential equations with additive or multiplicative noise. SIAM J. Sci. Comput. 36 (2014) 1770–1796. | DOI | Zbl

H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150 (1990) 262–268. | DOI

Cité par Sources :