In this article, we work on nontraditional models where the so-called traditional approximation on the Coriolis force is removed. In the derivation of the quasi-geostrophic equations, we carefully consider terms in , where (aspect ratio) and (Rossby number) are both small numbers. We provide here some rigorous crossed-asymptotics with regards to these parameters, prove some mathematical results and compare QHQG and QG models.
Accepté le :
DOI : 10.1051/m2an/2016041
Keywords: Ocean modeling, Coriolis force, traditional approximation, tilted quasi-geostrophic equations, slanted rotation
Lucas, Carine 1 ; McWilliams, James C. 2 ; Rousseau, Antoine 3
@article{M2AN_2017__51_2_427_0,
author = {Lucas, Carine and McWilliams, James C. and Rousseau, Antoine},
title = {On nontraditional quasi-geostrophic equations},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {427--442},
year = {2017},
publisher = {EDP Sciences},
volume = {51},
number = {2},
doi = {10.1051/m2an/2016041},
mrnumber = {3626405},
zbl = {1364.35280},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2016041/}
}
TY - JOUR AU - Lucas, Carine AU - McWilliams, James C. AU - Rousseau, Antoine TI - On nontraditional quasi-geostrophic equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 427 EP - 442 VL - 51 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2016041/ DO - 10.1051/m2an/2016041 LA - en ID - M2AN_2017__51_2_427_0 ER -
%0 Journal Article %A Lucas, Carine %A McWilliams, James C. %A Rousseau, Antoine %T On nontraditional quasi-geostrophic equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 427-442 %V 51 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2016041/ %R 10.1051/m2an/2016041 %G en %F M2AN_2017__51_2_427_0
Lucas, Carine; McWilliams, James C.; Rousseau, Antoine. On nontraditional quasi-geostrophic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 427-442. doi: 10.1051/m2an/2016041
and , The dissipative quasigeostrophic equations. Mathematika 28 (1981) 265–285. | MR | Zbl | DOI
and , Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean. SIAM J. Math. Anal. 25 (1994) 1023–1068. | MR | Zbl | DOI
F.J. Bretherton and M.J. Karweit, Mid-ocean mesoscale modeling. In Numerical Models of Ocean Circulation. Ocean Affairs Board, National Research Council, National Academy of Sciences, Washington, DC (1975) 237–249.
, Geostrophic turbulence. J. Atmos. Sci. 28 (1971) 1087–1095. | DOI
, Convergence of weak solutions for the primitive system of the quasigeostrophic equations. Asymptot. Anal. 42 (2005) 173–209. | MR | Zbl
and , Flows in a rotating spherical shell: the equatorial case. J. Fluid Mech. 276 (1994) 233–260. | MR | Zbl | DOI
B. Cushman-Roisin, Introduction to Geophysical Fluid Dynamics. Prentice Hall (1994).
, Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton’s principle on a sphere. J. Fluid Mech. 674 (2011) 174–195. | MR | Zbl | DOI
C. Eckart, Hydrodynamics of oceans and atmospheres. Pergamon Press, New York (1960). | MR | Zbl
and , Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity Commun. Partial Differ. Eq. 21 (1996) 619–658. | MR | Zbl | DOI
and , Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers Geophys. Astrophys. Fluid Dyn. 87 (1998) 1–30. | MR | DOI
, , , , Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys. 46 (2008) 05. | DOI
and , Ekman layers of rotating fluids, the case of well prepared initial data. Commun. Partial Differ. Eq. 22 (1997) 953–975. | MR | Zbl
, , and , Generalized quasi-geostrophy for spatially anisotropic rotationally constrained flows. J. Fluid Mech. 555 (2006) 233–274. | MR | Zbl | DOI
, and , Quasi-hydrostatic primitive equations for ocean global circulation models. Chinese Ann. Math. B 31 (2010) 1–20. | MR | Zbl | DOI
and , New developments and cosine effect in the viscous Shallow-Water and quasi-geostrophic equations. SIAM Multiscale Model. Simul. 7 (2008) 796–813. | MR | Zbl | DOI
, A note on a consistent quasigeostrophic model in a multiply connected domain. Dynamics of Atmospheres and Oceans 1 (1977) 427–441. | DOI
, Ekman layers of rotating fluids: The case of general initial data. Commun. Pure Appl. Math. 53 (2000) 432–483. | MR | Zbl | DOI
, and , Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res. 102 (1997) 5733–5752. | DOI
, The equations of motion for a shallow rotating atmosphere and the “traditional approximation”. J. Atmospheric Sci. 23 (1966) 626–628. | DOI
, Reply (to George Veronis). J. Atmospheric Sci. 25 (1968) 1155–1157.
, Equatorial Meridional Flows: Rotationally Induced Circulations. Pure Appl. Geophys. 157 (2000) 1767–1779. | DOI
and , Dynamically equilibrium shape of intrusive vortex formations in the ocean. Fluid Dynamics 38 (2003) 663–669. | MR | Zbl | DOI
, Laboratory experiments with tilted convective plumes on a centrifuge: a finite angle between the buoyancy force and the axis of rotation. J. Fluid Mech. 506 (2004) 217–244. | Zbl | DOI
, and , Idealized models of slantwise convection in a baroclinic flow. J. Phys. Oceanogr. 32 (2002) 558–572. | MR | DOI
, Comments on Phillips’ proposed simplification of the equations of motion for a shallow rotating atmosphere. J. Atmospheric Sci. 25 (1968) 1154–1155. | DOI
, Large scale ocean circulation. Adv. Appl. Mech. 13 (1973) 1–92. | DOI
, Comments on the equations of motion for a shallow rotating atmosphere and the ‘traditionnal approximation’. J. Atmospheric Sci. 27 (1970) 504–506. | DOI
and , Dynamically consistent quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Quarterly J. Roy. Meteorol. Soc. 121 (1995) 399–418. | DOI
, , and , Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Quarterly J. Roy. Meteorol. Soc. 131 (2005) 2081–2107. | DOI
and , Tilted convective plumes in numerical experiments. Ocean Model. 12 (2006) 101–111. | DOI
Cité par Sources :






