Some algorithms to compute the conjugates of episturmian morphisms
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 37 (2003) no. 1, pp. 85-104.

Episturmian morphisms generalize sturmian morphisms. They are defined as compositions of exchange morphisms and two particular morphisms $L$, and $𝔻$. Epistandard morphisms are the morphisms obtained without considering $𝔻$. In [14], a general study of these morphims and of conjugacy of morphisms is given. Here, given a decomposition of an Episturmian morphism $f$ over exchange morphisms and $\left\{L,𝔻\right\}$, we consider two problems: how to compute a decomposition of one conjugate of $f$; how to compute a list of decompositions of all the conjugates of $f$ when $f$ is epistandard. For each problem, we give several algorithms. Although the proposed methods are fundamently different, we show that some of these lead to the same result. We also give other algorithms, using the same input, to compute for instance the length of the morphism, or its number of conjugates.

DOI: 10.1051/ita:2003009
Classification: 68R15
Keywords: combinatorics on words, sturmian morphisms, conjugacy, algorithms
@article{ITA_2003__37_1_85_0,
author = {Richomme, Gwenael},
title = {Some algorithms to compute the conjugates of episturmian morphisms},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {85--104},
publisher = {EDP-Sciences},
volume = {37},
number = {1},
year = {2003},
doi = {10.1051/ita:2003009},
zbl = {1084.68094},
mrnumber = {1991753},
language = {en},
url = {http://www.numdam.org/articles/10.1051/ita:2003009/}
}
TY  - JOUR
AU  - Richomme, Gwenael
TI  - Some algorithms to compute the conjugates of episturmian morphisms
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2003
SP  - 85
EP  - 104
VL  - 37
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita:2003009/
DO  - 10.1051/ita:2003009
LA  - en
ID  - ITA_2003__37_1_85_0
ER  - 
%0 Journal Article
%A Richomme, Gwenael
%T Some algorithms to compute the conjugates of episturmian morphisms
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2003
%P 85-104
%V 37
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ita:2003009/
%R 10.1051/ita:2003009
%G en
%F ITA_2003__37_1_85_0
Richomme, Gwenael. Some algorithms to compute the conjugates of episturmian morphisms. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 37 (2003) no. 1, pp. 85-104. doi : 10.1051/ita:2003009. http://www.numdam.org/articles/10.1051/ita:2003009/

[1] P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexités $2n+1$. Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | MR | Zbl

[2] J. Berstel and P. Séébold, Sturmian words, Chap. 2, edited by M. Lothaire. Cambridge Mathematical Library, Algebraic Combinatorics on Words 90 (2002). | MR

[3] V. Berthé and L. Vuillon, Tilings and rotations on the torus: A two dimensional generalization of Sturmian sequences. Discrete Math. 223 (2000) 27-53. | MR | Zbl

[4] M.G. Castelli, F. Mignosi and A. Restivo, Fine and Wilf's theorem for three periods and a generalization of Sturmian words. Theoret. Comput. Sci. 218 (1999) 83-94. | Zbl

[5] X. Droubay, J. Justin and G. Pirillo, Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci. 255 (2001) 539-553. | MR | Zbl

[6] P. Hubert, Suites équilibrées. Theoret. Comput. Sci. 242 (2000) 91-108. | MR | Zbl

[7] J. Justin, On a paper by Castelli, Mignosi, Restivo. RAIRO: Theoret. Informatics Appl. 34 (2000) 373-377. | Numdam | MR | Zbl

[8] J. Justin, Episturmian words and morphisms (results and conjectures), edited by H. Crapo and D. Senato. Springer-Verlag, Algebraic Combinatorics and Comput. Sci. (2001) 533-539. | MR | Zbl

[9] J. Justin and G. Pirillo, Episturmian words and Episturmian morphisms. Theoret. Comput. Sci. 276 (2002) 281-313. | MR | Zbl

[10] J. Justin and L. Vuillon, Return words in Sturmian and Episturmian words. RAIRO: Theoret. Informatics Appl. 34 (2000) 343-356. | Numdam | MR | Zbl

[11] F. Levé and P. Séébold, Conjugation of standard morphisms and a generalization of singular words2002).

[12] M. Morse and G.A. Hedlund, Symbolic Dynamics II: Sturmian trajectories. Amer. J. Math. 61 (1940) 1-42. | JFM | MR

[13] G. Rauzy, Suites à termes dans un alphabet fini, in Séminaire de théorie des Nombres de Bordeaux. Exposé 25 (1983). | MR | Zbl

[14] G. Richomme, Conjugacy and Episturmian morphisms, Technical Report 2001-03. LaRIA, Theoret. Comput. Sci. (to appear). | MR | Zbl

[15] P. Séébold, Fibonacci morphisms and Sturmian words. Theoret. Comput. Sci. 88 (1991) 365-384. | MR | Zbl

[16] P. Séébold, On the conjugation of standard morphisms. Theoret. Comput. Sci. 195 (1998) 91-109. | MR | Zbl

[17] Z.X. Wen and Y. Zhang, Some remarks on invertible substitutions on three letter alphabet. Chin. Sci. Bulletin 44 (1999) 1755-1760. | MR | Zbl

Cited by Sources: