Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 4, pp. 574-592.

A distributed optimal control problem for evolutionary Stokes flows is studied via a pseudocompressibility formulation. Several results concerning the analysis of the velocity tracking problem are presented. Semidiscrete finite element error estimates for the corresponding optimality system are derived based on estimates for the penalized Stokes problem and the BRR (Brezzi-Rappaz-Raviart) theory. Finally, the convergence of the solutions of the penalized optimality systems as ε0 is examined.

DOI : https://doi.org/10.1051/cocv:2004021
Classification : 35B37,  65M60,  49J20
Mots clés : optimal control, velocity tracking, finite elements, semidiscrete error estimates, Stokes equations, penalized formulation
@article{COCV_2004__10_4_574_0,
     author = {Chrysafinos, Konstantinos},
     title = {Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {574--592},
     publisher = {EDP-Sciences},
     volume = {10},
     number = {4},
     year = {2004},
     doi = {10.1051/cocv:2004021},
     zbl = {1072.49021},
     mrnumber = {2111081},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2004021/}
}
Chrysafinos, Konstantinos. Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 4, pp. 574-592. doi : 10.1051/cocv:2004021. http://www.numdam.org/articles/10.1051/cocv:2004021/

[1] R. Adams, Sobolev Spaces. Academic Press, New York (1975). | MR 450957 | Zbl 0314.46030

[2] K. Chrysafinos and L.S. Hou, Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions. SIAM J. Numer. Anal. 40 (2002) 282-306. | MR 1921920 | Zbl 1020.65068

[3] A. Fursikov,Optimal control of distributed systems. Theories and Applications. AMS Providence (2000). | Zbl 1027.93500

[4] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes. Springer-Verlag, New York (1986). | MR 851383

[5] M.D. Gunzburger, L.S. Hou and T. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. ESAIM: M2AN 25 (1991) 711-748. | Numdam | MR 1135991 | Zbl 0737.76045

[6] M.D. Gunzburger and S. Manservisi, The velocity tracking problem for Navier-Stokes flows with bounded distributed control. SIAM J. Control Optim. 37 (2000) 1913-1945. | MR 1720145 | Zbl 0938.35118

[7] M.D. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal. 37 (2000) 1481-1512. | MR 1759904 | Zbl 0963.35150

[8] L.S. Hou, Error estimates for semidiscrete finite element approximation of the Stokes equations under minimal regularity assumptions. J. Sci. Comput. 16 (2001) 287-317. | MR 1873285 | Zbl 0996.76048

[9] L.S. Hou and S.S. Ravindran, A penalized Neumann control approach for solving an optimal Dirichlet control problem for the Navier-Stokes equations. SIAM J. Control Optim. 36 (1998) 1795-1814. | MR 1632548 | Zbl 0917.49003

[10] Jie Shen, On error estimates of the penalty method for unsteady Navier-Stokes equations. SIAM J. Numer. Anal. 32 (1995) 386-403. | MR 1324294 | Zbl 0822.35008

[11] R. Temam, Navier-Stokes equations. North-Holland, Amsterdam (1979). | MR 603444 | Zbl 0426.35003

[12] R. Temam, Une méthode d'approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 98 (1968) 115-152. | Numdam | Zbl 0181.18903

[13] B.A. Ton, Optimal shape control problems for the Navier-Stokes equations. SIAM J. Control Optim. 41 (2003) 1733-1747. | MR 1972531 | Zbl 1037.49035