We prove Lipschitz continuity for local minimizers of integral functionals of the Calculus of Variations in the vectorial case, where the energy density depends explicitly on the space variables and has general growth with respect to the gradient. One of the models is

$$F\left(u\right)={\int}_{\Omega}a\left(x\right){\left[h\left(\left|Du\right|\right)\right]}^{p\left(x\right)}\mathrm{d}x$$ |

Keywords: minimizers, regularity, nonstandard growth, exponential growth

@article{COCV_2003__9__399_0, author = {Mascolo, Elvira and Migliorini, Anna Paola}, title = {Everywhere regularity for vectorial functionals with general growth}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {399--418}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003019}, zbl = {1066.49023}, mrnumber = {1988669}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2003019/} }

TY - JOUR AU - Mascolo, Elvira AU - Migliorini, Anna Paola TI - Everywhere regularity for vectorial functionals with general growth JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 399 EP - 418 VL - 9 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2003019/ DO - 10.1051/cocv:2003019 LA - en ID - COCV_2003__9__399_0 ER -

%0 Journal Article %A Mascolo, Elvira %A Migliorini, Anna Paola %T Everywhere regularity for vectorial functionals with general growth %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 399-418 %V 9 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2003019/ %R 10.1051/cocv:2003019 %G en %F COCV_2003__9__399_0

Mascolo, Elvira; Migliorini, Anna Paola. Everywhere regularity for vectorial functionals with general growth. ESAIM: Control, Optimisation and Calculus of Variations, Volume 9 (2003), pp. 399-418. doi : 10.1051/cocv:2003019. http://www.numdam.org/articles/10.1051/cocv:2003019/

[1] The mathematical theory of diffusion and reaction of permeable catalysts. Clarendon Press, Oxford (1975). | Zbl

,[2] Regularity for minimizers of non-quadratic functionals: The case $1<p<2$. J. Math. Anal. Appl. 140 (1989) 115-135. | MR | Zbl

and ,[3] Regularity results for a class of functionals with nonstandard growth. Arch. Rational Mech. Anal. 156 (2001) 121-140. | MR | Zbl

and ,[4] Regularity results for quasiconvex functionals with nonstandard growth. Ann. Scuola Norm. Sup. Pisa 30 (2001). | Numdam | MR | Zbl

and ,[5] Hölder continuity of minimizers of functionals with variable growth exponent. Manuscripta Math. 93 (1997) 283-299. | MR | Zbl

and ,[6] Hölder continuity of the gradient of $p\left(x\right)$-harmonic mappings. C. R. Acad. Sci. Paris 328 (1999) 363-368. | MR | Zbl

and ,[7] Local boundedness for minima of functionals with non standard growth conditions. Rend. Mat. 18 (1998) 305-326. | Zbl

, and ,[8] ${L}^{\infty}$-estimates for a class of nonlinear elliptic systems with non standard growth. Atti Sem. Mat. Fis. Univ. Modena (to appear).

and ,[9] Everywhere regularity for a class of vectorial functionals under subquadratic general growth, Preprint. Dipartimento di Matematica “U. Dini”, University of Florence.

, and ,[10] Multiple integrals in the calculus of variations and non linear elliptic systems. Princeton Univ. Press, Princeton NJ, Ann. Math. Stud. 105 (1983). | MR | Zbl

,[11] Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscripta Math. 57 (1986) 55-99. | MR | Zbl

and ,[12] Metodi diretti nel calcolo delle variazioni. UMI, Bologna (1994). | MR | Zbl

,[13] Regularity and existence of solutions of elliptic equations with ($p,q$)-growth conditions. J. Differential Equations 90 (1991) 1-30. | MR | Zbl

,[14] Regularity for elliptic equations with general growth conditions. J. Differential Equations 105 (1993) 296-333. | MR | Zbl

,[15] Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa 23 (1996) 1-25. | Numdam | MR | Zbl

,[16] Continuity of certain Nemitsky operators on Sobolev spaces and chain rule. J. Anal. Math. 28 (1975) 303-334. | MR | Zbl

and ,[17] Local boundedness of integrals of Calculus of Variations. Ann. Mat. Pura Appl. 167 (1994) 323-339. | MR | Zbl

and ,[18] Everywhere regularity for a class of elliptic systems with $p$, $q$ growth conditions. Rend. Istit. Mat. Univ. Trieste XXXI (1999) 203-234. | MR | Zbl

,[19] Everywhere regularity for a class of elliptic systems with general growth conditions, Ph.D. Thesis. University of Florence, Italy (2000).

,[20] A two dimensional Dirichlet problem with an exponential nonlinearity. SIAM J. Math. Anal. 14 5 (1983) 719-735. | Zbl

,[21] Flow of shear dependent electrorheological fluids. C. R. Acad. Sci. Paris 329 (1999) 393-398. | MR | Zbl

,[22] On the modeling of electrorheological materials. Mech. Res. Commun. 23 (1996) 401-407. | Zbl

and ,[23] Regularity for a class of non-linear elliptic systems. Acta Math. 138 (1977) 219-240. | MR | Zbl

,[24] On Lavrentiev phenomenon. Russian J. Math. Phys. 3 (1995) 249-269. | MR | Zbl

,*Cited by Sources: *