We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint-Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.
Keywords: controllability, hyperbolic systems, shallow water
@article{COCV_2002__8__513_0, author = {Coron, Jean-Michel}, title = {Local controllability of a {1-D} tank containing a fluid modeled by the shallow water equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {513--554}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002050}, mrnumber = {1932962}, zbl = {1071.76012}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2002050/} }
TY - JOUR AU - Coron, Jean-Michel TI - Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 513 EP - 554 VL - 8 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2002050/ DO - 10.1051/cocv:2002050 LA - en ID - COCV_2002__8__513_0 ER -
%0 Journal Article %A Coron, Jean-Michel %T Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 513-554 %V 8 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2002050/ %R 10.1051/cocv:2002050 %G en %F COCV_2002__8__513_0
Coron, Jean-Michel. Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations. ESAIM: Control, Optimisation and Calculus of Variations, Volume 8 (2002), pp. 513-554. doi : 10.1051/cocv:2002050. http://www.numdam.org/articles/10.1051/cocv:2002050/
[1] Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992) 295-312. | MR | Zbl
,[2] Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris 317 (1993) 271-276. | Zbl
,[3] On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188. | MR | Zbl
,[4] On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM: COCV 1 (1996) 35-75. | Numdam | Zbl
,[5] Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary. Russian J. Math. Phys. 4 (1996) 429-448. | Zbl
and ,[6] Methods of mathematical physics, II. Interscience publishers, John Wiley & Sons, New York London Sydney (1962). | MR | Zbl
and ,[7] Nonlinear water waves. Academic Press, San Diego (1994). | MR | Zbl
,[8] Motion planning and nonlinear simulations for a tank containing a fluid, ECC 99.
, and ,[9] Exact controllability of the Navier-Stokes and Boussinesq equations. Russian Math. Surveys. 54 (1999) 565-618. | Zbl
and ,[10] Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles en dimension 3. C. R. Acad. Sci. Paris Sér. I 325 (1997) 987-992. | Zbl
,[11] Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1-44. | Numdam | MR | Zbl
,[12] Lectures on nonlinear hyperbolic differential equations. Springer-Verlag, Berlin Heidelberg, Math. Appl. 26 (1997). | MR | Zbl
,[13] On the controllability of the Burgers equation. ESAIM: COCV 3 (1998) 83-95. | Numdam | MR | Zbl
,[14] Are there connections between turbulence and controllability?, in 9th INRIA International Conference. Antibes (1990).
,[15] Exact controllability for distributed systems. Some trends and some problems, in Applied and industrial mathematics, Proc. Symp., Venice/Italy 1989. D. Reidel Publ. Co. Math. Appl. 56 (1991) 59-84. | MR | Zbl
,[16] On the controllability of distributed systems. Proc. Natl. Acad. Sci. USA 94 (1997) 4828-4835. | MR | Zbl
,[17] Approximate controllability of a hydro-elastic coupled system. ESAIM: COCV 1 (1995) 1-15. | Numdam | MR | Zbl
and ,[18] Exact boundary controllability of Galerkin's approximations of Navier-Stokes equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV 26 (1998) 605-621. | Numdam | Zbl
and ,[19] Li Ta Tsien and Yu Wen-Ci, Boundary value problems for quasilinear hyperbolic systems. Duke university, Durham, Math. Ser. V (1985). | Zbl
[20] Compressible fluid flow and systems of conservation laws in several space variables. Sringer-Verlag, New York Berlin Heidelberg Tokyo, Appl. Math. Sci. 53 (1984). | MR | Zbl
,[21] Dynamics and solutions to some control problems for water-tank systems. Preprint, CIT-CDS 00-004. | MR
and ,[22] Théorie du mouvement non permanent des eaux, avec applications aux crues des rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 53 (1871) 147-154. | JFM
,[23] Systèmes de lois de conservations, I et II. Diderot Éditeur, Arts et Sciences, Paris, New York, Amsterdam (1996). | MR
,[24] Control of systems without drift via generic loops. IEEE Trans. Automat. Control. 40 (1995) 1210-1219. | MR | Zbl
,Cited by Sources: