Acoustic wave guides as infinite-dimensional dynamical systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 324-347.

We prove the unique solvability, passivity/conservativity and some regularity results of two mathematical models for acoustic wave propagation in curved, variable diameter tubular structures of finite length. The first of the models is the generalised Webster’s model that includes dissipation and curvature of the 1D waveguide. The second model is the scattering passive, boundary controlled wave equation on 3D waveguides. The two models are treated in an unified fashion so that the results on the wave equation reduce to the corresponding results of approximating Webster’s model at the limit of vanishing waveguide intersection.

Reçu le :
DOI : 10.1051/cocv/2014019
Classification : 35L05, (35L20, 93C20, 47N70)
Mots clés : Wave propagation, tubular domain, wave equation, Webster’s horn model, passivity, regularity
Aalto, Atte 1 ; Lukkari, Teemu 2 ; Malinen, Jarmo 1

1 Aalto University, Dept. Mathematics and Systems Analysis, P.O. Box 11100, 00076 Aalto, Finland.
2 Department of Mathematics and Statistics, P.O. Box 35 (MaD), 40014 University of Jyväskylä, Finland.
@article{COCV_2015__21_2_324_0,
     author = {Aalto, Atte and Lukkari, Teemu and Malinen, Jarmo},
     title = {Acoustic wave guides as infinite-dimensional dynamical systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {324--347},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {2},
     year = {2015},
     doi = {10.1051/cocv/2014019},
     mrnumber = {3348400},
     zbl = {1316.35165},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2014019/}
}
TY  - JOUR
AU  - Aalto, Atte
AU  - Lukkari, Teemu
AU  - Malinen, Jarmo
TI  - Acoustic wave guides as infinite-dimensional dynamical systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 324
EP  - 347
VL  - 21
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2014019/
DO  - 10.1051/cocv/2014019
LA  - en
ID  - COCV_2015__21_2_324_0
ER  - 
%0 Journal Article
%A Aalto, Atte
%A Lukkari, Teemu
%A Malinen, Jarmo
%T Acoustic wave guides as infinite-dimensional dynamical systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 324-347
%V 21
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2014019/
%R 10.1051/cocv/2014019
%G en
%F COCV_2015__21_2_324_0
Aalto, Atte; Lukkari, Teemu; Malinen, Jarmo. Acoustic wave guides as infinite-dimensional dynamical systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 324-347. doi : 10.1051/cocv/2014019. http://www.numdam.org/articles/10.1051/cocv/2014019/

A. Aalto, D. Aalto, J. Malinen and M. Vainio, Modal locking between vocal fold and vocal tract oscillations. Preprint arXiv:1211.4788 (2012).

A. Aalto and J. Malinen, Composition of passive boundary control systems. Math. Control Relat. Fields 3 (2013) 1–19. | DOI | MR | Zbl

D. Aalto, O. Aaltonen, R.-P. Happonen, P. Jääsaari, A. Kivelä, J. Kuortti, J.M. Luukinen, J. Malinen, T. Murtola, R. Parkkola, J. Saunavaara and M. Vainio, Large scale data acquisition of simultaneous MRI and speech. Appl. Acoustics 83 (2014) 64–75. | DOI

J. Cervera, A.J. Van Der Schaft and A. Baños, Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43 (2007) 212–225. | DOI | MR | Zbl

E. Eisner, Complete solutions of the “Webster” horn equation. J. Acoust. Soc. Am. 41 (1967) 1126–1146. | DOI | Zbl

L. Evans and R. Gariepy, Measure Theory and the Fine Properties of Functions. CRC Press (1992). | MR | Zbl

H. Fattorini, Boundary control systems. SIAM J. Control 6 (1968) 349–385. | DOI | MR | Zbl

A. Fetter and J. Walecka, Theoretical Mechanics of Particles and Continua. Dover (2003). | MR | Zbl

F. Flandoli, I. Lasiecka and R. Triggiani, Algebraic Riccati equations with non-smoothing observation arising in hyperbolic and Euler-Bernoulli boundary control problems. Annal. Math. Pura Appl. CLIII (1988) 307–382. | MR | Zbl

F. Gesztesy and H. Holden, The damped string problem revisited. J. Differ. Equ. 251 (2011) 1086–1127. | DOI | MR | Zbl

V. Gorbachuk and M. Gorbachuk, Boundary Value Problems for Operator Differential Equations, vol. 48 of Math. Appl. (Soviet Ser.). Kluwer Academic Publishers Group, Dordrecht (1991). | MR | Zbl

P. Grisvard, Elliptic Problems in Non-Smooth Domains. Pitman (1985). | MR | Zbl

A. Hannukainen, T. Lukkari, J. Malinen and P. Palo, Vowel formants from the wave equation. J. Acoust. Soc. Am. Express Lett. 122 (2007) EL1–EL7. | DOI

T. Kato, Perturbation Theory for Linear Operators, vol. 132 of Grundlehren der Mathematischen Wissenschaften. Springer Verlag (1980). | MR | Zbl

P. Kuchment and H. Zeng, Convergence of spectra of mesoscopic systems collapsing onto a graph. J. Math. Anal. Appl. 258 (2001) 671–700. | DOI | MR | Zbl

M. Kurula, H. Zwart, A. J. Van Der Schaft and J. Behrndt, Dirac structures and their composition on Hilbert spaces. J. Math. Anal. Appl. 372 (2010) 402–422. | DOI | MR | Zbl

J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Differ. Equ. 50 (1983) 163–182. | DOI | MR | Zbl

I. Lasiecka, J.L. Lions and R. Triggiani, Nonhomogenous boundary value problems for second order hyperbolic operations. J. Math. Pures Appl. 65 (1986) 149–192. | MR | Zbl

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. II. Abstract hyperbolic-like systems, over a finite time horizon, vol. 75 of Encycl. Math. Appl. Cambridge University Press, Cambridge (2000). | MR | Zbl

M. Lesser and J. Lewis, Applications of matched asymptotic expansion methods to acoustics. I. The Webster horn equation and the stepped duct. J. Acoust. Soc. Am. 51 (1971) 1664–1669. | DOI | Zbl

M. Lesser and J. Lewis, Applications of matched asymptotic expansion methods to acoustics. II. The open-ended duct. J. Acoust. Soc. Am. 52 (1972) 1406–1410. | DOI | Zbl

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68. | DOI | MR | Zbl

J. L. Lions and E. Magenes, Non-Homogenous Boundary Value Problems and Applications II, vol. 182 of Die Grundlehren der Mathematischen Wissenchaften. Springer Verlag, Berlin (1972). | MR | Zbl

K. Liu and Z. Liu, Exponential decay of energy of vibrating strings with local viscoelasticity. Z. Angew. Math. Phys. 53 (2002) 265–280. | DOI | MR | Zbl

T. Lukkari and J. Malinen, A posteriori error estimates for Webster’s equation in wave propagation (2011), manuscript.

T. Lukkari and J. Malinen, Webster’s equation with curvature and dissipation (2011). Preprint arXiv:1204.4075.

J. Malinen, Conservativity of time-flow invertible and boundary control systems, Technical Report A479. Helsinki University of Technology Institute of Mathematics (2004).

J. Malinen, O. Staffans and G. Weiss, When is a linear system conservative? Quart. Appl. Math. 64 (2006) 61–91. | DOI | MR | Zbl

J. Malinen and O. Staffans, Conservative boundary control systems. J. Differ. Equ. 231 (2006) 290–312. | DOI | MR | Zbl

J. Malinen and O. Staffans, Impedance passive and conservative boundary control systems. Complex Anal. Oper. Theory 2 (2007) 279–300. | DOI | MR | Zbl

A. Nayfeh and D. Telionis, Acoustic propagation in ducts with varying cross sections. J. Acoust. Soc. Am. 54 (1973) 1654–1661. | DOI | Zbl

S. Rienstra, Sound transmission in slowly varying circular and annular lined ducts with flow. J. Fluid Mech. 380 (1999) 279–296. | DOI | Zbl

S. Rienstra, Webster’s horn equation revisited. SIAM J. Appl. Math. 65 (2005) 1981–2004. | DOI | MR | Zbl

S. Rienstra and W. Eversman, A numerical comparison between the multiple-scales and finite-element solution for sound propagation in lined flow ducts. J. Fluid Mech. 437 (2001) 367–384. | DOI | Zbl

J. Rubinstein and M. Schatzman, Variational problems on multiply connected thin strips I: Basic estimates and convergence of the Laplacian spectrum. Arch. Ration. Mech. Anal. 160 (2001) 271–308. | DOI | MR | Zbl

W. Rudin, Real and Complex Analysis. McGraw-Hill Book Company, New York, 3rd edition (1986). | MR | Zbl

D. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20. | MR | Zbl

D. Salamon, Infinite dimensional linear systems with unbounded control and observation: a functional analytic approach. Trans. Amer. Math. Soc. 300 (1987) 383–431. | MR | Zbl

D. Salamon, Realization theory in Hilbert spaces. Math. Systems Theory 21 (1989) 147–164. | DOI | MR | Zbl

V. Salmon, Generalized plane wave horn theory. J. Acoust. Soc. Am. 17 (1946) 199–211. | DOI

V. Salmon, A new family of horns. J. Acoust. Soc. Am 17 (1946) 212–218. | DOI

O. Staffans, Well-Posed Linear Systems. Cambridge University Press, Cambridge (2004). | MR | Zbl

R. Triggiani, Wave equation on a bounded domain with boundary dissipation: An operator approach. J. Math. Anal. Appl. 137 (1989) 438–461. | DOI | MR | Zbl

M. Tucsnak and G. Weiss, How to get a conservative well-posed linear system out of thin air. II. Controllability and stability. SIAM J. Control Optim. 42 (2003) 907–935. | DOI | MR | Zbl

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups. Birkhäuser Verlag, Basel (2009). | MR | Zbl

J. Villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems, Ph.D. thesis, University of Twente (2007).

A. Webster, Acoustic impedance, and the theory of horns and of the phonograph. Proc. Natl. Acad. Sci. USA 5 (1919) 275–282. | DOI

G. Weiss and M. Tucsnak, How to get a conservative well-posed linear system out of thin air. I. Well-posedness and energy balance. ESAIM: COCV 9 (2003) 247–274. | Numdam | MR | Zbl

Cité par Sources :