Singularity formation of the Yang–Mills Flow
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1655-1686.

We study singularity structure of Yang–Mills flow in dimensions n4. First we obtain a description of the singular set in terms of concentration for a localized entropy quantity, which leads to an estimate of its Hausdorff dimension. We develop a theory of tangent measures for the flow, which leads to a stratification of the singular set. By a refined blowup analysis we obtain Yang–Mills connections or solitons as blowup limits at any point in the singular set.

DOI : 10.1016/j.anihpc.2018.01.006
Mots clés : Yang–Mills, geometric flows, singularity analysis
@article{AIHPC_2018__35_6_1655_0,
     author = {Kelleher, Casey and Streets, Jeffrey},
     title = {Singularity formation of the {Yang{\textendash}Mills} {Flow}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1655--1686},
     publisher = {Elsevier},
     volume = {35},
     number = {6},
     year = {2018},
     doi = {10.1016/j.anihpc.2018.01.006},
     mrnumber = {3846240},
     zbl = {1402.37044},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.006/}
}
TY  - JOUR
AU  - Kelleher, Casey
AU  - Streets, Jeffrey
TI  - Singularity formation of the Yang–Mills Flow
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1655
EP  - 1686
VL  - 35
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.006/
DO  - 10.1016/j.anihpc.2018.01.006
LA  - en
ID  - AIHPC_2018__35_6_1655_0
ER  - 
%0 Journal Article
%A Kelleher, Casey
%A Streets, Jeffrey
%T Singularity formation of the Yang–Mills Flow
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1655-1686
%V 35
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.006/
%R 10.1016/j.anihpc.2018.01.006
%G en
%F AIHPC_2018__35_6_1655_0
Kelleher, Casey; Streets, Jeffrey. Singularity formation of the Yang–Mills Flow. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1655-1686. doi : 10.1016/j.anihpc.2018.01.006. http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.006/

[1] Allard, W. An integrality theorem and a regularity theorem for surfaces whose first variation with respect to a parametric elliptic integrals is controlled, Proceeding of Symp. in Pure Math., vol. 44, AMS, 1986 (1–2) | DOI | MR | Zbl

[2] Chen, Y.; Shen, C. Monotonicity formula and small action regularity for Yang–Mills flows in higher dimensions, Calc. Var. Partial Differ. Equ., Volume 2 (1994) no. 4, pp. 389–403 | MR | Zbl

[3] Chen, Z.; Zhang, Y. Stabilities of homothetically shrinking Yang–Mills solitons | arXiv | DOI | Zbl

[4] Donaldson, S.K.; Kronheimer, P.B. The Geometry of Four-Manifolds, Oxford Mathematical Monographs, The Clarendon Press/Oxford University Press, New York, 1990 Oxford Science Publications, MR1079726 (92a:57036) | MR | Zbl

[5] Feehan, P. Global existence and convergence of smooth solutions to Yang–Mills gradient flow over compact four-manifolds | arXiv

[6] Federer, H.; Ziemer, W.P. The Lebesgue set of a function whose distribution derivatives are p-th power summable, Indiana Univ. Math. J., Volume 22 (1972/1973), pp. 139–158 | DOI | MR | Zbl

[7] Gastel, A. Singularities of first kind in the harmonic map and Yang–Mills heat flow, Math. Z., Volume 242 (2002), pp. 47–62 | DOI | MR | Zbl

[8] Hamilton, R. Monotonicity formulas for parabolic flows on manifolds, Commun. Anal. Geom., Volume 1 (1993) no. 1, pp. 127–137 | DOI | MR | Zbl

[9] Hong, M.C.; Tian, G. Asymptotical behaviour of the Yang–Mills flow and singular Yang–Mills connections, Math. Ann., Volume 330 (2004), pp. 441–472 | MR | Zbl

[10] T. Ilmanen, Singularities of mean curvature flow of surfaces, preprint, 1995.

[11] Kelleher, C.; Streets, J. Entropy, stability, and Yang–Mills flow | arXiv | DOI | Zbl

[12] Lin, F.H.; Wang, C.Y. Harmonic and quasi-harmonic spheres, Commun. Anal. Geom., Volume 7 (1999) no. 2, pp. 397–429 | MR | Zbl

[13] Lin, F.H.; Wang, C.Y. Harmonic and quasi-harmonic spheres, part II, Commun. Anal. Geom., Volume 10 (2002), pp. 341–375 | MR | Zbl

[14] Lin, F.H.; Wang, C.Y. Harmonic and quasi-harmonic spheres, part III. Rectifiability of the parabolic defect measure and generalized varifold flows, Ann. l'inst. Henri Poincaré C, Anal. Non Linéaire, Volume 19 (2002) no. 2, pp. 209–259 | Numdam | MR | Zbl

[15] Naito, H. Finite time blowing-up for the Yang–Mills gradient flow in higher dimensions, Hokkaido Math. J., Volume 23 (1994) no. 3, pp. 451–464 MR 1299637 (95i:58054) | DOI | MR | Zbl

[16] Råde, J. On the Yang–Mills heat equation in two and three dimensions, J. Reine Angew. Math., Volume 431 (1992), pp. 123–163 | MR | Zbl

[17] Simon, L. Lectures on Geometric Measure Theory, Proc. Center for Math. Anal., vol. 3, Australian Nat. Univ. Press, Canberra, 1983 | MR | Zbl

[18] Struwe, M. The Yang–Mills flow in four dimensions, Calc. Var. Partial Differ. Equ., Volume 2 (1994) no. 2, pp. 123–150 | DOI | MR | Zbl

[19] Tian, G. Gauge theory and calibrated geometry I, Ann. Math. Second Ser., Volume 151 (2000) no. 1, pp. 193–268 | DOI | MR | Zbl

[20] Uhlenbeck, K. Connections with Lp-bounds on curvature, Commun. Math. Phys., Volume 83 (1982), pp. 31–42 | DOI | MR | Zbl

[21] Waldron, A. Instantons and singularities in the Yang–Mills flow | arXiv | DOI | Zbl

[22] Weinkove, B. Singularity formation in the Yang–Mills flow, Calc. Var. Partial Differ. Equ., Volume 19 (2004) no. 2, pp. 211–220 | DOI | MR | Zbl

[23] White, B. Stratification of minimal surfaces, mean curvature flows, and harmonic maps, J. Reine Angew. Math., Volume 488 (1997), pp. 1–35 | MR | Zbl

Cité par Sources :