We show that the Cauchy problem for a class of dispersive perturbations of Burgers' equations containing the low dispersion Benjamin–Ono equation
@article{AIHPC_2018__35_7_1719_0, author = {Molinet, Luc and Pilod, Didier and Vento, St\'ephane}, title = {On well-posedness for some dispersive perturbations of {Burgers'} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1719--1756}, publisher = {Elsevier}, volume = {35}, number = {7}, year = {2018}, doi = {10.1016/j.anihpc.2017.12.004}, mrnumber = {3906854}, zbl = {1459.76024}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.12.004/} }
TY - JOUR AU - Molinet, Luc AU - Pilod, Didier AU - Vento, Stéphane TI - On well-posedness for some dispersive perturbations of Burgers' equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 1719 EP - 1756 VL - 35 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2017.12.004/ DO - 10.1016/j.anihpc.2017.12.004 LA - en ID - AIHPC_2018__35_7_1719_0 ER -
%0 Journal Article %A Molinet, Luc %A Pilod, Didier %A Vento, Stéphane %T On well-posedness for some dispersive perturbations of Burgers' equation %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 1719-1756 %V 35 %N 7 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2017.12.004/ %R 10.1016/j.anihpc.2017.12.004 %G en %F AIHPC_2018__35_7_1719_0
Molinet, Luc; Pilod, Didier; Vento, Stéphane. On well-posedness for some dispersive perturbations of Burgers' equation. Annales de l'I.H.P. Analyse non linéaire, Volume 35 (2018) no. 7, pp. 1719-1756. doi : 10.1016/j.anihpc.2017.12.004. http://www.numdam.org/articles/10.1016/j.anihpc.2017.12.004/
[1] Stability properties of solitary waves for fractional KdV and BBM equations, 2017 (preprint) | arXiv
[2] Existence of solitary-wave solutions to nonlocal equations, Discrete Contin. Dyn. Syst., Volume 36 (2016), pp. 3483–3510 | DOI | MR
[3] Uniform estimates for paraproducts and related multilinear multipliers, Rev. Mat. Iberoam., Volume 25 (2009) no. 3, pp. 1055–1088 | MR | Zbl
[4] The initial value problem for the Korteweg–de Vries equation, Philos. Trans. R. Soc. Lond. Ser. A, Volume 278 (1975), pp. 555–601 | MR | Zbl
[5] Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. The Schrödinger equation, Geom. Funct. Anal., Volume 3 (1993), pp. 157–178 | DOI | Zbl
[6] On well-posedness for the Benjamin–Ono equation, Math. Ann., Volume 340 (2008), pp. 497–542 | MR | Zbl
[7] Maximal functions associated to filtrations, J. Funct. Anal., Volume 179 (2001) no. 2, pp. 409–425 | DOI | MR | Zbl
[8] Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Société Mathématique de France, Paris, 1978 (in French) | Numdam | MR | Zbl
[9] Sharp global well-posedness for KdV and modified KdV on and , J. Am. Math. Soc., Volume 16 (2003), pp. 705–749 | DOI | MR | Zbl
[10] The IVP for the dispersion generalized Benjamin–Ono equation in weighted Sobolev spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013), pp. 763–790 | DOI | Numdam | MR | Zbl
[11] Séminaire Bourbaki 796, Astérisque, Volume 237 (1995), pp. 163–187 | Numdam | MR | Zbl
[12] Local well-posedness for dispersion generalized Benjamin–Ono equations in Sobolev spaces, J. Differ. Equ., Volume 252 (2012), pp. 2053–2084 | MR | Zbl
[13] A para-differential renormalization technique for nonlinear dispersive equations, Commun. Partial Differ. Equ., Volume 35 (2010) no. 10, pp. 1827–1875 | DOI | MR | Zbl
[14] Well-posedness and dispersive decay of small data solutions for the Benjamin–Ono equation, Ann. Sci. Éc. Norm. Supér. (2017) (preprint, 2017 in press) | arXiv | MR | Zbl
[15] Global well-posedness of the Benjamin–Ono equation in low-regularity spaces, J. Am. Math. Soc., Volume 20 (2007), pp. 753–798 | MR | Zbl
[16] Global well-posedness of the KP-I initial value problem in the energy space, Invent. Math., Volume 173 (2008), pp. 265–304 | DOI | MR | Zbl
[17] On the local well-posedness of the Benjamin–Ono and modified Benjamin–Ono equations, Math. Res. Lett., Volume 10 (2003), pp. 879–895 | DOI | MR | Zbl
[18] Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., Volume 40 (1991) no. 1, pp. 33–69 | DOI | MR | Zbl
[19] Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Commun. Pure Appl. Math., Volume 46 (1993), pp. 527–620 | DOI | MR | Zbl
[20] A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Physica D, Volume 295–296 (2015), pp. 46–65 | MR | Zbl
[21] On the local well-posedness of the Benjamin–Ono equation in , Int. Math. Res. Not., Volume 26 (2003), pp. 1449–1464 | MR | Zbl
[22] Dispersive perturbations of Burgers and hyperbolic equations I: local theory, SIAM J. Math. Anal., Volume 46 (2014), pp. 1505–1537 | DOI | MR | Zbl
[23] Remarks on the orbital stability of ground state solutions of fKdV e relative equations, Adv. Differ. Equ., Volume 20 (2015), pp. 835–858 | MR | Zbl
[24] Non-Homogeneous Boundary Value Problems and Applications, vol. I, Grundlehren Math. Wiss., vol. 181, Springer-Verlag, New York, Heidelberg, 1972 (Translated from French by P. Kenneth) | MR | Zbl
[25] Ill-posedness issues for the Benjamin–Ono and related equations, SIAM J. Math. Anal., Volume 33 (2001) no. 4, pp. 982–988 | MR | Zbl
[26] The Cauchy problem for the Benjamin–Ono equation in revisited, Anal. PDE, Volume 5 (2012), pp. 365–395 | DOI | MR | Zbl
[27] Unconditional uniqueness for the modified Korteweg–de Vries equation on the line, Rev. Mat. Iberoam. (2014) (preprint, 2018 in press) | arXiv | MR | Zbl
[28] On unconditional well-posedness for the periodic modified Korteweg–de Vries equation, J. Math. Soc. Jpn. (2016) http://mathsoc.jp/publication/JMSJ/pdf/JMSJ7697.pdf (preprint, 2018 in press) | arXiv | MR | Zbl
[29] Improvement of the energy method for strongly non resonant dispersive equations and applications, Anal. PDE, Volume 8 (2015), pp. 1455–1496 | DOI | MR | Zbl
[30] Bi-parameter paraproducts, Acta Math., Volume 193 (2004), pp. 269–296 | DOI | MR | Zbl
[31] On the global well-posedness of the Benjamin–Ono equation, Differ. Integral Equ., Volume 4 (1991), pp. 527–542 | MR | Zbl
[32] Sur quelques généralisations de l'équation de KdV, J. Math. Pures Appl., Volume 58 (1979), pp. 21–61 | MR | Zbl
[33] Global Strichartz estimates for nontrapping perturbations of the Laplacian, Commun. Partial Differ. Equ., Volume 25 (2000) no. 11–12, pp. 2171–2183 | MR | Zbl
[34] Global well-posedness of the Benjamin–Ono equation in , J. Hyperbolic Differ. Equ., Volume 1 (2004), pp. 27–49 | MR | Zbl
Cited by Sources: