The nonlinear Schrödinger equation with a potential
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1477-1530.

We consider the cubic nonlinear Schrödinger equation with a potential in one space dimension. Under the assumptions that the potential is generic, sufficiently localized, with no bound states, we obtain the long-time asymptotic behavior of small solutions. In particular, we prove that, as time goes to infinity, solutions exhibit nonlinear phase corrections that depend on the scattering matrix associated to the potential. The proof of our result is based on the use of the distorted Fourier transform – the so-called Weyl–Kodaira–Titchmarsh theory – a precise understanding of the “nonlinear spectral measure” associated to the equation, and nonlinear stationary phase arguments and multilinear estimates in this distorted setting.

DOI : 10.1016/j.anihpc.2017.12.002
Classification : 35Q55, 35B34
Mots clés : Nonlinear Schrödinger equation, Distorted Fourier transform, Scattering theory, Modified scattering
@article{AIHPC_2018__35_6_1477_0,
     author = {Germain, Pierre and Pusateri, Fabio and Rousset, Fr\'ed\'eric},
     title = {The nonlinear {Schr\"odinger} equation with a potential},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1477--1530},
     publisher = {Elsevier},
     volume = {35},
     number = {6},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.12.002},
     mrnumber = {3846234},
     zbl = {1406.35355},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.12.002/}
}
TY  - JOUR
AU  - Germain, Pierre
AU  - Pusateri, Fabio
AU  - Rousset, Frédéric
TI  - The nonlinear Schrödinger equation with a potential
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1477
EP  - 1530
VL  - 35
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.12.002/
DO  - 10.1016/j.anihpc.2017.12.002
LA  - en
ID  - AIHPC_2018__35_6_1477_0
ER  - 
%0 Journal Article
%A Germain, Pierre
%A Pusateri, Fabio
%A Rousset, Frédéric
%T The nonlinear Schrödinger equation with a potential
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1477-1530
%V 35
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.12.002/
%R 10.1016/j.anihpc.2017.12.002
%G en
%F AIHPC_2018__35_6_1477_0
Germain, Pierre; Pusateri, Fabio; Rousset, Frédéric. The nonlinear Schrödinger equation with a potential. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1477-1530. doi : 10.1016/j.anihpc.2017.12.002. http://www.numdam.org/articles/10.1016/j.anihpc.2017.12.002/

[1] Alazard, T.; Delort, J.M. Global solutions and asymptotic behavior for two dimensional gravity water waves, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015) no. 5, pp. 1149–1238 | MR

[2] Bambusi, D.; Cuccagna, S. On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential, Am. J. Math., Volume 133 (2011) no. 5, pp. 1421–1468 | DOI | MR | Zbl

[3] Bethuel, F.; Gravejat, P.; Smets, D. Asymptotic stability in the energy space for dark solitons of the Gross–Pitaevskii equation, Ann. Sci. Éc. Norm. Supér. (4), Volume 48 (2015) no. 6, pp. 1327–1381 | MR | Zbl

[4] Buslaev, V.; Perelman, G. On the stability of solitary waves for nonlinear Schrödinger equations, Nonlinear Evolution Equations, Am. Math. Soc. Transl. Ser. 2, vol. 164, Adv. Math. Sci., vol. 22, Amer. Math. Soc., Providence, RI, 1995, pp. 75–98 | MR | Zbl

[5] Cazenave, T. Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10, New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI, 2003 (xiv+323 pp.) | DOI | MR | Zbl

[6] Cuccagna, S. On asymptotic stability in 3D of kinks for the ϕ4 model, Trans. Am. Math. Soc., Volume 360 (2008) no. 5, pp. 2581–2614 | DOI | MR | Zbl

[7] Cuccagna, S. On asymptotic stability in energy space of ground states of NLS in 1D, J. Differ. Equ., Volume 245 (2008) no. 3, pp. 653–691 | DOI | MR | Zbl

[8] Cuccagna, S.; Georgiev, V.; Visciglia, N. Decay and scattering of small solutions of pure power NLS in R with p>3 and with a potential, Commun. Pure Appl. Math., Volume 67 (2014) no. 6, pp. 957–981 | DOI | MR | Zbl

[9] S. Cuccagna, V. Georgiev, N. Visciglia, oral communication.

[10] Cuccagna, S.; Pelinovsky, D. The asymptotic stability of solitons in the cubic NLS equation on the line, Appl. Anal., Volume 93 (2014) no. 4, pp. 791–822 | DOI | MR | Zbl

[11] Deift, P.; Trubowitz, E. Inverse scattering on the line, Commun. Pure Appl. Math., Volume 32 (1979) no. 2, pp. 121–251 | DOI | MR | Zbl

[12] Deift, P.; Zhou, X. Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space, Commun. Pure Appl. Math., Volume 56 (2003) no. 8, pp. 1029–1077 | DOI | MR | Zbl

[13] Deift, P.; Zhou, X. Perturbation theory for infinite-dimensional integrable systems on the line. A case study, Acta Math., Volume 188 (2002) no. 2, pp. 163–262 | DOI | MR | Zbl

[14] Delort, J.M. Existence globale et comportement asymptotique pour l' équation de Klein–Gordon quasi-linéaire à données petites en dimension 1, Ann. Sci. Éc. Norm. Supér., Volume 34 (2001), pp. 1–61 | Numdam | MR | Zbl

[15] J.M. Delort, Modified scattering for odd solutions of cubic nonlinear Schrödinger equations with potential in dimension one, <hal-01396705>, 2016.

[16] Donninger, R.; Krieger, J. A vector field method on the distorted Fourier side and decay for wave equations with potentials, Mem. Am. Math. Soc., Volume 241 (2016) no. 1142 (v+80 pp.) | MR | Zbl

[17] Dunford, N.; Schwartz, J. Linear Operators. Part II. Spectral Theory. Selfadjoint Operators in Hilbert Space, Wiley Class. Libr., Wiley-Intersci. Publ., John Wiley & Sons, Inc., New York, 1988 (reprint of the 1963 original) | MR

[18] Germain, P. The space–time resonance method, Proc. J. EDP (2010) (Exp No 8)

[19] Germain, P.; Hani, Z.; Walsh, S. Nonlinear resonances with a potential: multilinear estimates and an application to NLS, Int. Math. Res. Not. (2015) no. 18, pp. 8484–8544 | DOI | MR | Zbl

[20] Germain, P.; Masmoudi, N.; Shatah, J. Global solutions of quadratic Schrödinger equations, Int. Math. Res. Not. (2009) no. 3, pp. 414–432 | MR | Zbl

[21] Germain, P.; Masmoudi, N.; Shatah, J. Global solutions for the gravity surface water waves equation in dimension 3, Ann. Math., Volume 175 (2012), pp. 691–754 | DOI | MR | Zbl

[22] Germain, P.; Pusateri, F.; Rousset, F. Asymptotic stability of solitons for mKdV, Adv. Math., Volume 299 (2016), pp. 272–330 | DOI | MR | Zbl

[23] Goldberg, M.; Schlag, W. Dispersive estimates for Schrödinger operators in dimensions one and three, Commun. Math. Phys., Volume 251 (2004) no. 1, pp. 157–178 | DOI | MR | Zbl

[24] Gustafson, S.; Nakanishi, K.; Tsai, T. Scattering for the Gross–Pitaevsky equation in 3 dimensions, Commun. Contemp. Math., Volume 11 (2009) no. 4, pp. 657–707 | DOI | MR | Zbl

[25] Hayashi, N.; Naumkin, P. Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Am. J. Math., Volume 120 (1998), pp. 369–389 | DOI | MR | Zbl

[26] Hayashi, N.; Naumkin, P. Large time behavior of solutions for the modified Korteweg–de Vries equation, Int. Math. Res. Not. (1999) no. 8, pp. 395–418 | DOI | MR | Zbl

[27] Hayashi, N.; Naumkin, P. Quadratic nonlinear Klein–Gordon equation in one dimension, J. Math. Phys., Volume 53 (2012) no. 10 (36 pp.) | DOI | MR | Zbl

[28] Hwang, I.L. The L2 boundedness of pseudodifferential operators, Trans. Am. Math. Soc., Volume 302 (1987) no. 1, pp. 55–76 | MR | Zbl

[29] Ifrim, M.; Tataru, D. Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension (preprint) | arXiv | DOI | MR | Zbl

[30] Ionescu, A.; Pusateri, F. Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal., Volume 266 (2014), pp. 139–176 | DOI | MR | Zbl

[31] Ionescu, A.; Pusateri, F. Global solutions for the gravity water waves system in 2D, Invent. Math., Volume 199 (2015) no. 3, pp. 653–804 | DOI | MR | Zbl

[32] Ionescu, A.; Pusateri, F. Global regularity for 2d water waves with surface tension, Mem. Am. Math. Soc. (2018) (in press 100 pp.) | arXiv | DOI | MR | Zbl

[33] Journé, J.-L.; Soffer, A.; Sogge, C. Decay estimates for Schrödinger operators, Commun. Pure Appl. Math., Volume 44 (1991) no. 5, pp. 573–604 | MR | Zbl

[34] Kato, J.; Pusateri, F. A new proof of long range scattering for critical nonlinear Schrödinger equations, Differ. Integral Equ., Volume 24 (2011) no. 9–10, pp. 923–940 | MR | Zbl

[35] Kowalczyk, M.; Martel, Y.; Munoz, C. Kink dynamics in the ϕ4 model: asymptotic stability for odd perturbations in the energy space, J. Am. Math. Soc., Volume 30 (2017) no. 3, pp. 769–798 | DOI | MR | Zbl

[36] Lerner, N. Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators, Pseudo Diff. Oper., vol. 3, Birkhäuser Verlag, Basel, 2010 (xii+397 pp.) | MR | Zbl

[37] Lindblad, H.; Soffer, A. A remark on asymptotic completeness for the critical nonlinear Klein–Gordon equation, Lett. Math. Phys., Volume 73 (2005) no. 3, pp. 249–258 | DOI | MR | Zbl

[38] Lindblad, H.; Soffer, A. Scattering for the Klein–Gordon equation with quadratic and variable coefficient cubic nonlinearities, Trans. Am. Math. Soc., Volume 367 (2015) no. 12, pp. 8861–8909 | DOI | MR | Zbl

[39] Martel, Y.; Merle, F. Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal., Volume 157 (2001) no. 3, pp. 219–254 | DOI | MR | Zbl

[40] Naumkin, I.P. Sharp asymptotic behavior of solutions for cubic nonlinear Schrödinger equations with a potential, J. Math. Phys., Volume 57 (2016) no. 5 | DOI | MR

[41] Pego, R.; Weinstein, M.I. Asymptotic stability of solitary waves, Commun. Math. Phys., Volume 164 (1994) no. 2, pp. 305–349 | DOI | MR | Zbl

[42] Pillet, C.A.; Wayne, C.E. Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations, J. Differ. Equ., Volume 141 (1997) no. 2, pp. 310–326 | DOI | MR | Zbl

[43] Reed, M.; Simon, B. Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York–London, 1978 (xv+396 pp.) | MR | Zbl

[44] Schlag, W., Ann. Math. Stud., Volume vol. 163, Princeton Univ. Press, Princeton, NJ (2007), pp. 255–285 | MR | Zbl

[45] Soffer, A. Soliton dynamics and scattering, International Congress of Mathematicians, vol. III, Eur. Math. Soc., Zürich, 2006, pp. 459–471 | MR | Zbl

[46] Soffer, A.; Weinstein, M.I. Multichannel nonlinear scattering for nonintegrable equations, Commun. Math. Phys., Volume 133 (1990) no. 1, pp. 119–146 | DOI | MR | Zbl

[47] Soffer, A.; Weinstein, M.I. Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., Volume 136 (1999) no. 1, pp. 9–74 | DOI | MR | Zbl

[48] Sterbenz, J. Dispersive decay for the 1D Klein–Gordon equation with variable coefficient nonlinearities, Trans. Am. Math. Soc., Volume 368 (2016) no. 3, pp. 2081–2113 | DOI | MR | Zbl

[49] Tao, T. Why are solitons stable?, Bull. Am. Math. Soc. (N.S.), Volume 46 (2009) no. 1, pp. 1–33 | MR | Zbl

[50] Yafaev, D. Mathematical Scattering Theory. Analytic Theory, Math. Surv. Monogr., vol. 158, American Mathematical Society, Providence, RI, 2010 (xiv+444 pp.) | MR | Zbl

[51] Weinstein, M.I. Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., Volume 39 (1986), pp. 51–68 | DOI | MR | Zbl

[52] Weder, R. The Wk,p-continuity of the Schrödinger wave operators on the line, Commun. Math. Phys., Volume 208 (1999) no. 2, pp. 507–520 | DOI | MR | Zbl

[53] Weder, R. LpLp estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential, J. Funct. Anal., Volume 170 (2000), pp. 37–68 | DOI | MR | Zbl

[54] Wilcox, C. Sound Propagation in Stratified Fluids, Appl. Math. Sci., vol. 50, Springer-Verlag, New York, 1984 | MR | Zbl

Cité par Sources :