Existence and qualitative theory for stratified solitary water waves
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 517-576.

This paper considers two-dimensional gravity solitary waves moving through a body of density stratified water lying below vacuum. The fluid domain is assumed to lie above an impenetrable flat ocean bed, while the interface between the water and vacuum is a free boundary where the pressure is constant. We prove that, for any smooth choice of upstream velocity field and density function, there exists a continuous curve of such solutions that includes large-amplitude surface waves. Furthermore, following this solution curve, one encounters waves that come arbitrarily close to possessing points of horizontal stagnation.

We also provide a number of results characterizing the qualitative features of solitary stratified waves. In part, these include bounds on the wave speed from above and below, some of which are new even for constant density flow; an a priori bound on the velocity field and lower bound on the pressure; a proof of the nonexistence of monotone bores in this physical regime; and a theorem ensuring that all supercritical solitary waves of elevation have an axis of even symmetry.

DOI : 10.1016/j.anihpc.2017.06.003
Mots clés : Water waves, Stratified solitary waves, Free boundary problems, Global bifurcation
@article{AIHPC_2018__35_2_517_0,
     author = {Chen, Robin Ming and Walsh, Samuel and Wheeler, Miles H.},
     title = {Existence and qualitative theory for stratified solitary water waves},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {517--576},
     publisher = {Elsevier},
     volume = {35},
     number = {2},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.06.003},
     mrnumber = {3765551},
     zbl = {1408.35135},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.003/}
}
TY  - JOUR
AU  - Chen, Robin Ming
AU  - Walsh, Samuel
AU  - Wheeler, Miles H.
TI  - Existence and qualitative theory for stratified solitary water waves
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 517
EP  - 576
VL  - 35
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.003/
DO  - 10.1016/j.anihpc.2017.06.003
LA  - en
ID  - AIHPC_2018__35_2_517_0
ER  - 
%0 Journal Article
%A Chen, Robin Ming
%A Walsh, Samuel
%A Wheeler, Miles H.
%T Existence and qualitative theory for stratified solitary water waves
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 517-576
%V 35
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.003/
%R 10.1016/j.anihpc.2017.06.003
%G en
%F AIHPC_2018__35_2_517_0
Chen, Robin Ming; Walsh, Samuel; Wheeler, Miles H. Existence and qualitative theory for stratified solitary water waves. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 517-576. doi : 10.1016/j.anihpc.2017.06.003. http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.003/

[1] Alazard, T.; Delort, J.-M. Global solutions and asymptotic behavior for two dimensional gravity water waves, Ann. Sci. Éc. Norm. Supér., Volume 5 (2015), pp. 1149–1238 | MR

[2] Alexandrov, A.D. A characteristic property of spheres, Ann. Mat. Pura Appl. (4), Volume 58 (1962), pp. 303–315 | DOI | MR | Zbl

[3] Alford, M.H.; Peacock, T.; MacKinnon, J.A.; Nash, J.D.; Buijsman, M.C.; Centuroni, L.R.; Chao, S.-Y.; Chang, M.-H.; Farmer, D.M.; Fringer, O.B.; Fu, K.-H.; Gallacher, P.C.; Graber, H.C.; Helfrich, K.R.; Jachec, S.M.; Jackson, C.R.; Klymak, J.M.; Ko, D.S.; Jan, S.; Johnston, T.M.S.; Legg, S.; Lee, I.-H.; Lien, R.-C.; Mercier, M.J.; Moum, J.N.; Musgrave, R.; Park, J.-H.; Pickering, A.I.; Pinkel, R.; Rainville, L.; Ramp, S.R.; Rudnick, D.L.; Sarkar, S.; Scotti, A.; Simmons, H.L.; St Laurent, L.C.; Venayagamoorthy, S.K.; Wang, Y.-H.; Wang, J.; Yang, Y.J.; Paluszkiewicz, T.; Tang, T.-Y. (David) The formation and fate of internal waves in the South China Sea, Nature, Volume 521 (2015), pp. 65–69 | DOI

[4] Amick, C.J. Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 11 (1984), pp. 441–499 | Numdam | MR | Zbl

[5] Amick, C.J.; Fraenkel, L.E.; Toland, J.F. On the Stokes conjecture for the wave of extreme form, Acta Math., Volume 148 (1982), pp. 193–214 | DOI | MR | Zbl

[6] Amick, C.J.; Toland, J.F. On periodic water-waves and their convergence to solitary waves in the long-wave limit, Philos. Trans. R. Soc. Lond. Ser. A, Volume 303 (1981), pp. 633–669 | MR | Zbl

[7] Amick, C.J.; Toland, J.F. On solitary water-waves of finite amplitude, Arch. Ration. Mech. Anal., Volume 76 (1981), pp. 9–95 | DOI | MR | Zbl

[8] Amick, C.J.; Turner, R.E.L. A global theory of internal solitary waves in two-fluid systems, Trans. Am. Math. Soc., Volume 298 (1986), pp. 431–484 | DOI | MR | Zbl

[9] Amick, C.J.; Turner, R.E.L. Small internal waves in two-fluid systems, Arch. Ration. Mech. Anal., Volume 108 (1989), pp. 111–139 | DOI | MR | Zbl

[10] Beale, J.T. The existence of solitary water waves, Commun. Pure Appl. Math., Volume 30 (1977), pp. 373–389 | MR | Zbl

[11] Benjamin, T.B. Internal waves of finite amplitude and permanent form, J. Fluid Mech., Volume 25 (1966), pp. 241–270 | DOI | Zbl

[12] Benjamin, T.B. A unified theory of conjugate flows, Philos. Trans. R. Soc. Lond. Ser. A, Volume 269 (1971), pp. 587–643 | MR | Zbl

[13] Benjamin, T.B. Impulse, flow force and variational principles, IMA J. Appl. Math., Volume 32 (1984), pp. 3–68 | DOI | MR | Zbl

[14] Benjamin, T.B.; Bona, J.L.; Bose, D.K. Solitary-wave solutions of nonlinear problems, Philos. Trans. R. Soc. Lond. Ser. A, Volume 331 (1990), pp. 195–244 | MR | Zbl

[15] Berestycki, H.; Nirenberg, L. Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys., Volume 5 (1988), pp. 237–275 | DOI | MR | Zbl

[16] Berestycki, H.; Nirenberg, L. On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat. (N.S.), Volume 22 (1991), pp. 1–37 | MR | Zbl

[17] Bona, J.L.; Bose, D.K.; Turner, R.E.L. Finite-amplitude steady waves in stratified fluids, J. Math. Pures Appl., Volume 9 (1983) no. 62, pp. 389–439 | MR | Zbl

[18] Buffoni, B.; Groves, M.D. A multiplicity result for solitary gravity-capillary waves in deep water via critical-point theory, Arch. Ration. Mech. Anal., Volume 146 (1999), pp. 183–220 | DOI | MR | Zbl

[19] Buffoni, B.; Groves, M.D.; Toland, J.F. A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers, Philos. Trans. R. Soc. Lond. Ser. A, Volume 354 (1996), pp. 575–607 | MR | Zbl

[20] Buffoni, B.; Toland, J. Analytic Theory of Global Bifurcation: An Introduction, Princeton University Press, 2003 | MR | Zbl

[21] Chen, R.M.; Walsh, S. Continuous dependence on the density for stratified steady water waves, Arch. Ration. Mech. Anal., Volume 219 (2016), pp. 741–792 | MR

[22] Constantin, A.; Ehrnström, M.; Wahlén, E. Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., Volume 140 (2007), pp. 591–603 | DOI | MR | Zbl

[23] Constantin, A.; Escher, J. Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., Volume 498 (2004), pp. 171–181 | DOI | MR | Zbl

[24] Constantin, A.; Strauss, W.A. Exact steady periodic water waves with vorticity, Commun. Pure Appl. Math., Volume 57 (2004), pp. 481–527 | DOI | MR | Zbl

[25] Constantin, A.; Strauss, W.A. Periodic traveling gravity water waves with discontinuous vorticity, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 133–175 | DOI | MR | Zbl

[26] Coutand, D.; Shkoller, S. Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Am. Math. Soc., Volume 20 (2007), pp. 829–930 | DOI | MR | Zbl

[27] Craig, W.; Sternberg, P. Symmetry of solitary waves, Commun. Partial Differ. Equ., Volume 13 (1988), pp. 603–633 | DOI | MR | Zbl

[28] Dancer, E. Bifurcation theory for analytic operators, Proc. Lond. Math. Soc., Volume 26 (1973), pp. 359–384 | MR | Zbl

[29] Dancer, E. Global structure of the solutions of nonlinear real analytic eigenvalue problems, Proc. Lond. Math. Soc., Volume 27 (1973), pp. 747–765 | MR | Zbl

[30] Dias, F.; Il'ichev, A. Interfacial waves with free-surface boundary conditions: an approach via a model equation, Physica D, Volume 150 (2001), pp. 278–300 | DOI | MR | Zbl

[31] Dubreil-Jacotin, M. Sur la determination rigoureuse des ondes permanentes periodiques d'ampleur finie, J. Math. Pures Appl., Volume 13 (1934), pp. 217–291 | Numdam | MR | Zbl

[32] Dubreil-Jacotin, M. Sur les theoremes d'existence relatifs aux ondes permanentes periodiques a deux dimensions dans les liquides heterogenes, J. Math. Pures Appl., Volume 16 (1937), pp. 43–67 | Numdam | Zbl

[33] Fraenkel, L. An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge Univ. Press, 2000 | DOI | MR | Zbl

[34] Friedrichs, K.O.; Hyers, D.H. The existence of solitary waves, Commun. Pure Appl. Math., Volume 7 (1954), pp. 517–550 | DOI | MR | Zbl

[35] Germain, P.; Masmoudi, N.; Shatah, J. Global solutions for the gravity water waves equation in dimension 3, Ann. Math. (2), Volume 175 (2012), pp. 691–754 | DOI | MR | Zbl

[36] Germain, P.; Masmoudi, N.; Shatah, J. Global existence for capillary water waves, Commun. Pure Appl. Math., Volume 68 (2015), pp. 625–687 | DOI | MR | Zbl

[37] Gidas, B.; Ni, W.M.; Nirenberg, L. Symmetry and related properties via the maximum principle, Commun. Math. Phys., Volume 68 (1979), pp. 209–243 | DOI | MR | Zbl

[38] Groves, M.D.; Mielke, A. A spatial dynamics approach to three-dimensional gravity-capillary steady water waves, Proc. R. Soc. Edinb. Sect. A, Volume 131 (2001), pp. 83–136 | DOI | MR | Zbl

[39] Groves, M.D.; Wahlén, E. Spatial dynamics methods for solitary gravity-capillary water waves with an arbitrary distribution of vorticity, SIAM J. Math. Anal., Volume 39 (2007), pp. 932–964 | DOI | MR | Zbl

[40] Groves, M.D.; Wahlén, E. Small-amplitude Stokes and solitary gravity water waves with an arbitrary distribution of vorticity, Physica D, Volume 237 (2008), pp. 1530–1538 | DOI | MR | Zbl

[41] Grue, J.; Jensen, A.; Rusås, P.-O.; Sveen, J.K. Breaking and broadening of internal solitary waves, J. Fluid Mech., Volume 413 (2000), pp. 181–217 | DOI | MR | Zbl

[42] Haragus, M.; Iooss, G. Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Universitext, Springer-Verlag London, Ltd., London, 2011 (EDP Sciences, Les Ulis) | MR | Zbl

[43] Helfrich, K.R.; Melville, W.K. Annual Reviews, Annu. Rev. Fluid Mech., Volume vol. 38 (2006), pp. 395–425 (Palo Alto, CA) | DOI | MR | Zbl

[44] Hur, V.M. Exact solitary water waves with vorticity, Arch. Ration. Mech. Anal., Volume 188 (2008), pp. 213–244 | MR | Zbl

[45] Hur, V.M. Symmetry of solitary water waves with vorticity, Math. Res. Lett., Volume 15 (2008), pp. 491–509 | MR | Zbl

[46] Ionescu, A.D.; Pusateri, F. Global solutions for the gravity water waves system in 2D, Invent. Math., Volume 199 (2015), pp. 653–804 | DOI | MR | Zbl

[47] James, G. Small amplitude steady internal waves in stratified fluids, Ann. Univ. Ferrara, Volume 43 (1997), pp. 65–119 | DOI | MR | Zbl

[48] Keady, G.; Norbury, J. Water waves and conjugate streams, J. Fluid Mech., Volume 70 (1975), pp. 663–671 | DOI | MR | Zbl

[49] Keady, G.; Norbury, J. On the existence theory for irrotational water waves, Math. Proc. Camb. Philos. Soc., Volume 83 (1978), pp. 137–157 | DOI | MR | Zbl

[50] Keady, G.; Norbury, J. Waves and conjugate streams with vorticity, Mathematika, Volume 25 (1978), pp. 129–150 | DOI | MR | Zbl

[51] Keady, G.; Pritchard, W.G. Bounds for surface solitary waves, Proc. Camb. Philos. Soc., Volume 76 (1974), pp. 345–358 | DOI | MR | Zbl

[52] Kirchgässner, K. Wave-solutions of reversible systems and applications, J. Differ. Equ., Volume 45 (1982), pp. 113–127 | DOI | MR | Zbl

[53] Kirchgässner, K. Nonlinearly resonant surface waves and homoclinic bifurcation, Adv. Appl. Mech., vol. 26, Academic Press, Boston, MA, 1988, pp. 135–181 | DOI | MR | Zbl

[54] Kirchgässner, K.; Lankers, K. Structure of permanent waves in density-stratified media, Meccanica, Volume 28 (1993), pp. 269–276 | DOI | Zbl

[55] Kozlov, V.; Kuznetsov, N.; Lokharu, E. On bounds and non-existence in the problem of steady waves with vorticity, J. Fluid Mech., Volume 765 (2015), pp. R1 (13 pp.) | DOI | MR | Zbl

[56] Kozlov, V.; Kuznetsov, N.; Lokharu, E. On the Benjamin–Lighthill conjecture for water waves with vorticity, 2015 | arXiv | MR | Zbl

[57] Krasovskiĭ, Y.P. On the theory of steady-state waves of finite amplitude, USSR Comput. Math. Math. Phys., Volume 1 (1962), pp. 996–1018 | DOI | MR | Zbl

[58] Lamb, K.G. Conjugate flows for a three-layer fluid, Phys. Fluids, Volume 12 (2000), pp. 2169–2185 | MR | Zbl

[59] Lamb, K.G.; Wan, B. Conjugate flows and flat solitary waves for a continuously stratified fluid, Phys. Fluids, Volume 10 (1998), pp. 2061–2079 | MR | Zbl

[60] Lankers, K.; Friesecke, G. Fast, large-amplitude solitary waves in the 2D Euler equations for stratified fluids, Nonlinear Anal., Volume 29 (1997), pp. 1061–1078 | DOI | MR | Zbl

[61] Lavrentiev, M.A. I. On the theory of long waves. II. A contribution to the theory of long waves, Amer. Math. Soc. Transl., Volume 102 (1954), pp. 53 | MR | Zbl

[62] Levi-Civita, T. Determinazione rigorosa delle onde irrotazionali periodiche in acqua profonda, Rend. Accad. Lincei, Volume 33 (1924), pp. 141–150 | JFM

[63] Li, C. Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Commun. Partial Differ. Equ., Volume 16 (1991), pp. 585–615 | MR | Zbl

[64] Lieberman, G.M. Two-dimensional nonlinear boundary value problems for elliptic equations, Trans. Am. Math. Soc., Volume 300 (1987), pp. 287–295 | DOI | MR | Zbl

[65] Long, R.R. Some aspects of the flow of stratified fluids. I. A theoretical investigation, Tellus, Volume 5 (1953), pp. 42–58 | MR

[66] Maia, L.A. Symmetry of internal waves, Nonlinear Anal., Volume 28 (1997), pp. 87–102 | MR | Zbl

[67] Makarenko, N.I. Free Boundary Problems in Continuum Mechanics, Internat. Ser. Numer. Math., Volume vol. 106, Birkhäuser, Basel (1992), pp. 195–204 (Novosibirsk, 1991) | MR | Zbl

[68] McLeod, J.B. The Froude number for solitary waves, Proc. R. Soc. Edinb. Sect. A, Volume 97 (1984), pp. 193–197 | DOI | MR | Zbl

[69] McLeod, J.B. The Stokes and Krasovskii conjectures for the wave of greatest height, Stud. Appl. Math., Volume 98 (1997), pp. 311–333 | DOI | MR | Zbl

[70] Mielke, A. Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci., Volume 10 (1988), pp. 51–66 | DOI | MR | Zbl

[71] Mielke, A. Hamiltonian and Lagrangian Flows on Center Manifolds with Applications to Elliptic Variational Problems, Lecture Notes in Mathematics, vol. 1489, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl

[72] Nekrasov, A. On steady waves, Izv. Ivanovo-Voznesensk. Politekhn. In-ta, Volume 3 (1921)

[73] Rusås, P.-O.; Grue, J. Solitary waves and conjugate flows in a three-layer fluid, Eur. J. Mech. B Fluids, Volume 21 (2002), pp. 185–206 | MR | Zbl

[74] Russell, J.S. Report on waves, 14th Meeting of the British Association for the Advancement of Science, vol. 311, 1844, pp. 390

[75] Serrin, J. A symmetry problem in potential theory, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 304–318 | DOI | MR | Zbl

[76] Shatah, J.; Zeng, C. Geometry and a priori estimates for free boundary problems of the Euler equation, Commun. Pure Appl. Math., Volume 61 (2008), pp. 698–744 | DOI | MR | Zbl

[77] Shatah, J.; Zeng, C. Local well-posedness for fluid interface problems, Arch. Ration. Mech. Anal., Volume 199 (2011), pp. 653–705 | DOI | MR | Zbl

[78] Starr, V.P. Momentum and energy integrals for gravity waves of finite height, J. Mar. Res., Volume 6 (1947), pp. 175–193 | MR

[79] Stoker, J.J. Water Waves. The Mathematical Theory with Applications, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1992 (Reprint of the 1957 original, A Wiley-Interscience Publication) | MR | Zbl

[80] Stokes, G.G. On the theory of oscillatory waves, Math. Phys. Pap., Volume 1 (1880), pp. 197–229 (314–326)

[81] Sun, S.M. Proceedings of the Second World Congress of Nonlinear Analysts, part 8, Volume vol. 30 (1997), pp. 5481–5490 (Athens, 1996) | MR | Zbl

[82] Sun, S.M. Solitary internal waves in continuously stratified fluids of great depth, Physica D, Volume 166 (2002), pp. 76–103 | MR | Zbl

[83] Ter-Krikorov, A. The existence of periodic waves which degenerate into a solitary wave, J. Appl. Math. Mech., Volume 24 (1960), pp. 930–949 | DOI | Zbl

[84] Ter-Krikorov, A. The solitary wave on the surface of a turbulent liquid, USSR Comput. Math. Math. Phys., Volume 1 (1962), pp. 1253–1264 | DOI

[85] Ter-Krikorov, A. Théorie exacte des ondes longues stationnaires dans un liquide hétérogène, J. Méc., Volume 2 (1963), pp. 351–376 | MR

[86] Toland, J.F. On the existence of a wave of greatest height and Stokes's conjecture, Proc. R. Soc. Lond. Ser. A, Volume 363 (1978), pp. 469–485 | MR | Zbl

[87] Tuleuov, B.I. Smooth bores in a two-layer fluid with a free surface, Prikl. Mekh. Tekhn. Fiz., Volume 38 (1997), pp. 87–92 | MR | Zbl

[88] Turner, R.E.L. Internal waves in fluids with rapidly varying density, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), Volume 8 (1981), pp. 513–573 | Numdam | MR | Zbl

[89] Turner, R.E.L. A variational approach to surface solitary waves, J. Differ. Equ., Volume 55 (1984), pp. 401–438 | MR | Zbl

[90] Turner, R.E.L.; Vanden-Broeck, J.-M. Broadening of interfacial solitary waves, Phys. Fluids, Volume 31 (1988), pp. 2486–2490 | Zbl

[91] Varvaruca, E. On the existence of extreme waves and the Stokes conjecture with vorticity, J. Differ. Equ., Volume 246 (2009), pp. 4043–4076 | DOI | MR | Zbl

[92] Volpert, V.; Volpert, A. Properness and topological degree for general elliptic operators, Abstr. Appl. Anal. (2003), pp. 129–181 | DOI | MR | Zbl

[93] Walsh, S. Some criteria for the symmetry of stratified water waves, Wave Motion, Volume 46 (2009), pp. 350–362 | DOI | MR | Zbl

[94] Walsh, S. Stratified and steady periodic water waves, SIAM J. Math. Anal., Volume 41 (2009), pp. 1054–1105 | DOI | MR | Zbl

[95] Walsh, S. Steady stratified periodic gravity waves with surface tension II: global bifurcation, Discrete Contin. Dyn. Syst. Ser. A, Volume 34 (2014), pp. 3241–3285 | Zbl

[96] Wheeler, M.H. Large-amplitude solitary water waves with vorticity, SIAM J. Math. Anal., Volume 45 (2013), pp. 2937–2994 | DOI | MR | Zbl

[97] Wheeler, M.H. The Froude number for solitary water waves with vorticity, J. Fluid Mech., Volume 768 (2015), pp. 91–112 | DOI | MR | Zbl

[98] Wheeler, M.H. Solitary water waves of large amplitude generated by surface pressure, Arch. Ration. Mech. Anal., Volume 218 (2015), pp. 1131–1187 | DOI | MR | Zbl

[99] Whyburn, G.T. Topological Analysis, Princeton Mathematical Series, vol. 23, Princeton University Press, Princeton, N.J., 1964 | MR | Zbl

[100] Wu, S. Global wellposedness of the 3-D full water wave problem, Invent. Math., Volume 184 (2011), pp. 125–220 | MR | Zbl

[101] Yanowitch, M. Gravity waves in a heterogeneous incompressible fluid, Commun. Pure Appl. Math., Volume 15 (1962), pp. 45–61 | DOI | MR | Zbl

[102] Yih, C.-S. Dynamics of Nonhomogeneous Fluids, The Macmillan Co., New York, 1965 | MR | Zbl

Cité par Sources :