On the scattering problem for infinitely many fermions in dimensions d ≥3 at positive temperature
Annales de l'I.H.P. Analyse non linéaire, Volume 35 (2018) no. 2, pp. 393-416.

In this paper, we study the dynamics of a system of infinitely many fermions in dimensions d3 near thermal equilibrium and prove scattering in the case of small perturbation around equilibrium in a certain generalized Sobolev space of density operators. This work is a continuation of our previous paper [11], and extends the important recent result of M. Lewin and J. Sabin in [19] of a similar type for dimension d=2. In the work at hand, we establish new, improved Strichartz estimates that allow us to control the case d3.

DOI: 10.1016/j.anihpc.2017.05.002
Keywords: Hartree equation, Infinitely many particles, Scattering
@article{AIHPC_2018__35_2_393_0,
     author = {Chen, Thomas and Hong, Younghun and Pavlovi\'c, Nata\v{s}a},
     title = {On the scattering problem for infinitely many fermions in dimensions \protect\emph{d}         \ensuremath{\geq}3 at positive temperature},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {393--416},
     publisher = {Elsevier},
     volume = {35},
     number = {2},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.05.002},
     mrnumber = {3765547},
     zbl = {1383.81366},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.05.002/}
}
TY  - JOUR
AU  - Chen, Thomas
AU  - Hong, Younghun
AU  - Pavlović, Nataša
TI  - On the scattering problem for infinitely many fermions in dimensions d         ≥3 at positive temperature
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 393
EP  - 416
VL  - 35
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.05.002/
DO  - 10.1016/j.anihpc.2017.05.002
LA  - en
ID  - AIHPC_2018__35_2_393_0
ER  - 
%0 Journal Article
%A Chen, Thomas
%A Hong, Younghun
%A Pavlović, Nataša
%T On the scattering problem for infinitely many fermions in dimensions d         ≥3 at positive temperature
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 393-416
%V 35
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.05.002/
%R 10.1016/j.anihpc.2017.05.002
%G en
%F AIHPC_2018__35_2_393_0
Chen, Thomas; Hong, Younghun; Pavlović, Nataša. On the scattering problem for infinitely many fermions in dimensions d         ≥3 at positive temperature. Annales de l'I.H.P. Analyse non linéaire, Volume 35 (2018) no. 2, pp. 393-416. doi : 10.1016/j.anihpc.2017.05.002. http://www.numdam.org/articles/10.1016/j.anihpc.2017.05.002/

[1] Abou Salem, W.; Chen, T.; Vougalter, V. On the generalized semi-relativistic Schrödinger–Poisson system in Rn , Doc. Math., Volume 18 (2013), pp. 343–357 | MR | Zbl

[2] Bardos, C.; Erdös, L.; Golse, F.; Mauser, N.; Yau, H.-T. Derivation of the Schrödinger–Poisson equation from the quantum N-body problem, C. R. Math. Acad. Sci. Paris, Volume 334 (2002), pp. 515–520 | DOI | MR | Zbl

[3] Bardos, C.; Golse, F.; Gottlieb, A.D.; Mauser, N.J. Mean field dynamics of fermions and the time-dependent Hartree–Fock equation, J. Math. Pures Appl., Volume 9 (2003) no. 82, pp. 665–683 | MR | Zbl

[4] Benedikter, N.; Porta, M.; Schlein, B. Mean-field evolution of fermionic systems, Commun. Math. Phys., Volume 331 (2014) no. 3, pp. 1087–1131 | DOI | MR | Zbl

[5] Bourgain, J. Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Not. (1998) no. 5, pp. 253–283 | DOI | MR | Zbl

[6] Bourgain, J. New Global Well-Posedness Results for Nonlinear Schrödinger Equations, AMS Publications, Providence, RI, 1999 | MR

[7] Bove, A.; Da Prato, G.; Fano, G. An existence proof for the Hartree–Fock time-dependent problem with bounded two-body interaction, Commun. Math. Phys., Volume 37 (1974), pp. 183–191 | DOI | MR | Zbl

[8] Bove, A.; Da Prato, G.; Fano, G. On the Hartree–Fock time-dependent problem, Commun. Math. Phys., Volume 49 (1976) no. 1, pp. 25–33 | DOI | MR

[9] Brezzi, F.; Markowich, P. The three-dimensional Wigner–Poisson problem: existence, uniqueness and approximation, Math. Methods Appl. Sci., Volume 14 (1991) no. 1, pp. 35–61 | DOI | MR | Zbl

[10] Chadam, J.M. The time-dependent Hartree–Fock equations with Coulomb two-body interaction, Commun. Math. Phys., Volume 46 (1976), pp. 99–104 | DOI | MR | Zbl

[11] Chen, T.; Hong, Y.; Pavlović, N. Global well-posedness of the NLS system for infinitely many fermions (preprint available at) | arXiv | DOI | MR | Zbl

[12] Elgart, A.; Erdös, L.; Schlein, B.; Yau, H.-T. Nonlinear Hartree equation as the mean field limit of weakly coupled fermions, J. Math. Pures Appl., Volume 83 (2004), pp. 1241–1273 | DOI | MR | Zbl

[13] Frank, R.; Lewin, M.; Lieb, E.; Seiringer, R. Strichartz inequality for orthonormal functions, J. Eur. Math. Soc., Volume 16 (2014) no. 7, pp. 1507–1526 | DOI | MR | Zbl

[14] Frank, R.; Sabin, J. Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates, 2014 (preprint available at) | arXiv | MR

[15] Fröhlich, J.; Knowles, A. A microscopic derivation of the time-dependent Hartree–Fock equation with Coulomb two-body interaction, J. Stat. Phys., Volume 145 (2011), pp. 23–50 | DOI | MR | Zbl

[16] Klainerman, S.; Machedon, M. Space–time estimates for null forms and the local existence theorem, Commun. Pure Appl. Math., Volume 46 (1993) no. 9, pp. 1221–1268 | DOI | MR | Zbl

[17] Klainerman, S.; Machedon, M. On the uniqueness of solutions to the Gross–Pitaevskii hierarchy, Commun. Math. Phys., Volume 279 (2008) no. 1, pp. 169–185 | DOI | MR | Zbl

[18] Lewin, M.; Sabin, J. The Hartree equation for infinitely many particles I. Well-posedness theory, Commun. Math. Phys., Volume 334 (2015) no. 1, pp. 117–170 | DOI | MR | Zbl

[19] Lewin, M.; Sabin, J. The Hartree equation for infinitely many particles, II. Dispersion and scattering in 2D, Anal. PDE, Volume 7 (2014) no. 6, pp. 1339–1363 | DOI | MR | Zbl

[20] Narnhofer, H.; Sewell, G. Vlasov hydrodynamics of a quantum mechanical model, Commun. Math. Phys., Volume 79 (1981) no. 1, pp. 9–24 | DOI | MR

[21] Tao, T. A counterexample to an endpoint bilinear Strichartz inequality, Electron. J. Differ. Equ., Volume 151 (2006) (6 pp) | MR | Zbl

[22] Zagatti, S. The Cauchy problem for Hartree–Fock time-dependent equations, Ann. Inst. Henri Poincaré A, Phys. Théor., Volume 56 (1992), pp. 357–374 | Numdam | MR | Zbl

Cited by Sources: