Analysis of the loss of boundary conditions for the diffusive Hamilton–Jacobi equation
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1913-1923.

We consider the diffusive Hamilton–Jacobi equation, with superquadratic Hamiltonian, homogeneous Dirichlet conditions and regular initial data. It is known from [4] (Barles–DaLio, 2004) that the problem admits a unique, continuous, global viscosity solution, which extends the classical solution in case gradient blowup occurs. We study the question of the possible loss of boundary conditions after gradient blowup, which seems to have remained an open problem till now.

Our results show that the issue strongly depends on the initial data and reveal a rather rich variety of phenomena. For any smooth bounded domain, we construct initial data such that the loss of boundary conditions occurs everywhere on the boundary, as well as initial data for which no loss of boundary conditions occurs in spite of gradient blowup. Actually, we show that the latter possibility is rather exceptional. More generally, we show that the set of the points where boundary conditions are lost, can be prescribed to be arbitrarily close to any given open subset of the boundary.

DOI : 10.1016/j.anihpc.2017.02.001
Mots clés : Diffusive Hamilton–Jacobi equation, Viscosity solution, Gradient blow-up, Loss of boundary conditions
@article{AIHPC_2017__34_7_1913_0,
     author = {Porretta, Alessio and Souplet, Philippe},
     title = {Analysis of the loss of boundary conditions for the diffusive {Hamilton{\textendash}Jacobi} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1913--1923},
     publisher = {Elsevier},
     volume = {34},
     number = {7},
     year = {2017},
     doi = {10.1016/j.anihpc.2017.02.001},
     mrnumber = {3724761},
     zbl = {1391.35078},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.02.001/}
}
TY  - JOUR
AU  - Porretta, Alessio
AU  - Souplet, Philippe
TI  - Analysis of the loss of boundary conditions for the diffusive Hamilton–Jacobi equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1913
EP  - 1923
VL  - 34
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.02.001/
DO  - 10.1016/j.anihpc.2017.02.001
LA  - en
ID  - AIHPC_2017__34_7_1913_0
ER  - 
%0 Journal Article
%A Porretta, Alessio
%A Souplet, Philippe
%T Analysis of the loss of boundary conditions for the diffusive Hamilton–Jacobi equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1913-1923
%V 34
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.02.001/
%R 10.1016/j.anihpc.2017.02.001
%G en
%F AIHPC_2017__34_7_1913_0
Porretta, Alessio; Souplet, Philippe. Analysis of the loss of boundary conditions for the diffusive Hamilton–Jacobi equation. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1913-1923. doi : 10.1016/j.anihpc.2017.02.001. http://www.numdam.org/articles/10.1016/j.anihpc.2017.02.001/

[1] Alaa, N. Weak solutions of quasilinear parabolic equations with measures as initial data, Ann. Math. Blaise Pascal, Volume 3 (1996), pp. 1–15 | Numdam | MR | Zbl

[2] Alikakos, N.D.; Bates, P.W.; Grant, C.P. Blow up for a diffusion–advection equation, Proc. R. Soc. Edinb., Sect. A, Volume 113 (1989), pp. 181–190 | DOI | MR | Zbl

[3] Arrieta, J.M.; Rodriguez-Bernál, A.; Souplet, Ph. Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 3 (2004), pp. 1–15 | Numdam | MR | Zbl

[4] Barles, G.; Da Lio, F. On the generalized Dirichlet problem for viscous Hamilton–Jacobi equations, J. Math. Pures Appl., Volume 83 (2004), pp. 53–75 | DOI | MR | Zbl

[5] Benachour, S.; Dabuleanu, S. The mixed Cauchy–Dirichlet problem for a viscous Hamilton–Jacobi equation, Adv. Differ. Equ., Volume 8 (2003), pp. 1409–1452 | MR | Zbl

[6] Conner, G.R.; Grant, C.P. Asymptotics of blowup for a convection–diffusion equation with conservation, Differ. Integral Equ., Volume 9 (1996), pp. 719–728 | MR | Zbl

[7] Crandall, M.; Ishii, H.; Lions, P.L. User's guide to viscosity solutions of second order partial differential equation, Bull. Am. Math. Soc., Volume 27 (1992), pp. 1–67 | DOI | MR | Zbl

[8] Fila, M.; Lieberman, G.M. Derivative blow-up and beyond for quasilinear parabolic equations, Differ. Integral Equ., Volume 7 (1994) no. 3–4, pp. 811–821 | MR | Zbl

[9] Fila, M.; Taskinen, J.; Winkler, M. Convergence to a singular steady-state of a parabolic equation with gradient blow-up, Appl. Math. Lett., Volume 20 (2007), pp. 578–582 | DOI | MR | Zbl

[10] Friedman, A. Partial Differential Equations of Parabolic Type, Prentice Hall, 1964 | MR | Zbl

[11] Guo, J.-S.; Hu, B. Blowup rate estimates for the heat equation with a nonlinear gradient source term, Discrete Contin. Dyn. Syst., Volume 20 (2008), pp. 927–937 | MR | Zbl

[12] Hesaaraki, M.; Moameni, A. Blow-up positive solutions for a family of nonlinear parabolic equations in general domain in RN , Mich. Math. J., Volume 52 (2004), pp. 375–389 | DOI | MR | Zbl

[13] Kardar, M.; Parisi, G.; Zhang, Y.C. Dynamic scaling of growing interfaces, Phys. Rev. Lett., Volume 56 (1986), pp. 889–892 | DOI | Zbl

[14] Krug, J.; Spohn, H. Universality classes for deterministic surface growth, Phys. Rev. A, Volume 38 (1988), pp. 4271–4283 | DOI | MR

[15] Li, Y.-X.; Souplet, Ph. Single-point gradient blow-up on the boundary for diffusive Hamilton–Jacobi equations in planar domains, Commun. Math. Phys., Volume 293 (2009), pp. 499–517 | MR | Zbl

[16] Lions, P.-L. Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre, J. Anal. Math., Volume 45 (1985), pp. 234–254 (in French) | MR | Zbl

[17] Maz'ya, V.G. Sobolev Spaces, Springer, 1985 | MR

[18] Ni, W.-M.; Sacks, P.; Tavantzis, J. On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differ. Equ., Volume 54 (1984), pp. 97–120 | MR | Zbl

[19] Porretta, A.; Souplet, Ph. The profile of boundary gradient blow-up for the diffusive Hamilton–Jacobi equation, Int. Math. Res. Not. (2016) (in press) | DOI | MR

[20] Porretta, A.; Zuazua, E. Null controllability of viscous Hamilton–Jacobi equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012), pp. 301–333 | DOI | Numdam | MR | Zbl

[21] Quittner, P. Threshold and strong threshold solutions of a semilinear parabolic equation, Adv. Differ. Equ. (2017) (to appear) | MR | Zbl

[22] Quittner, P.; Souplet, Ph. Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Adv. Texts: Basel Textb., Birkhäuser Verlag, Basel, 2007 | MR | Zbl

[23] Souplet, Ph. Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differ. Integral Equ., Volume 15 (2002), pp. 237–256 | MR | Zbl

[24] Souplet, Ph.; Vázquez, J.L. Stabilization towards a singular steady state with gradient blow-up for a convection–diffusion problem, Discrete Contin. Dyn. Syst., Volume 14 (2006), pp. 221–234 | MR | Zbl

[25] Souplet, Ph.; Zhang, Q.S. Global solutions of inhomogeneous Hamilton–Jacobi equations, J. Anal. Math., Volume 99 (2006), pp. 355–396 | DOI | MR | Zbl

[26] Tabet Tchamba, Th. Large time behavior of solutions of viscous Hamilton–Jacobi equations with superquadratic Hamiltonian, Asymptot. Anal., Volume 66 (2010), pp. 161–186 | MR | Zbl

Cité par Sources :