A sharp Cauchy theory for the 2D gravity-capillary waves
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1793-1836.

This article is devoted to the Cauchy problem for the 2D gravity-capillary water waves in fluid domains with general bottoms. Local well-posedness for this problem with Lipschitz initial velocity was established by Alazard–Burq–Zuily [1]. We prove that the Cauchy problem in Sobolev spaces is uniquely solvable for initial data 14-derivative less regular than the aforementioned threshold, which corresponds to the gain of Hölder regularity of the semi-classical Strichartz estimate for the fully nonlinear system. In order to obtain this Cauchy theory, we establish global, quantitative results for the paracomposition theory of Alinhac [5].

DOI : 10.1016/j.anihpc.2016.12.007
Mots clés : Water waves, Cauchy problem, Semi-classical Strichartz estimate, Paracomposition
@article{AIHPC_2017__34_7_1793_0,
     author = {Nguyen, Huy Quang},
     title = {A sharp {Cauchy} theory for the {2D} gravity-capillary waves},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1793--1836},
     publisher = {Elsevier},
     volume = {34},
     number = {7},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.12.007},
     zbl = {1451.76028},
     mrnumber = {3724757},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.007/}
}
TY  - JOUR
AU  - Nguyen, Huy Quang
TI  - A sharp Cauchy theory for the 2D gravity-capillary waves
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1793
EP  - 1836
VL  - 34
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.007/
DO  - 10.1016/j.anihpc.2016.12.007
LA  - en
ID  - AIHPC_2017__34_7_1793_0
ER  - 
%0 Journal Article
%A Nguyen, Huy Quang
%T A sharp Cauchy theory for the 2D gravity-capillary waves
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1793-1836
%V 34
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.007/
%R 10.1016/j.anihpc.2016.12.007
%G en
%F AIHPC_2017__34_7_1793_0
Nguyen, Huy Quang. A sharp Cauchy theory for the 2D gravity-capillary waves. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1793-1836. doi : 10.1016/j.anihpc.2016.12.007. http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.007/

[1] Alazard, Thomas; Burq, Nicolas; Zuily, Claude On the water waves equations with surface tension, Duke Math. J., Volume 158 (2011) no. 3, pp. 413–499 | MR | Zbl

[2] Alazard, Thomas; Burq, Nicolas; Zuily, Claude Strichartz estimates for water waves, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011) no. 5, pp. 855–903 | Numdam | MR | Zbl

[3] Alazard, Thomas; Burq, Nicolas; Zuily, Claude On the Cauchy problem for gravity water waves, Invent. Math., Volume 198 (2014) no. 1, pp. 71–163 | MR | Zbl

[4] Alazard, Thomas; Burq, Nicolas; Zuily, Claude Strichartz estimate and the Cauchy problem for the gravity water waves equations, 2014 | arXiv

[5] Alinhac, Serge Paracomposition et opérateurs paradifférentiels, Commun. Partial Differ. Equ., Volume 11 (1986) no. 1, pp. 87–121 | MR | Zbl

[6] Bahouri, Hajer; Chemin, Jean-Yves Équations d'ondes quasilinéaires et estimations de Strichartz, Am. J. Math., Volume 121 (1999) no. 6, pp. 1337–1377 | MR | Zbl

[7] Bahouri, Hajer; Chemin, Jean-Yves; Danchin, Raphaël Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren Math. Wiss., Fundamental Principles of Mathematical Sciences, vol. 343, Springer, Heidelberg, 2011 | DOI | MR | Zbl

[8] Bony, Jean-Michel Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Supér. (4), Volume 14 (1981) no. 2, pp. 209–246 | Numdam | MR | Zbl

[9] Burq, Nicolas; Gérard, Patrick; Tzvetkov, Nikolay Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Am. J. Math., Volume 126 (2004) no. 3, pp. 569–605 | MR | Zbl

[10] Christianson, Hans; Hur, Vera Mikyoung; Staffilani, Gigliola Strichartz estimates for the water-wave problem with surface tension, Commun. Partial Differ. Equ., Volume 35 (2010) no. 12, pp. 2195–2252 | MR | Zbl

[11] Christodoulou, Demetrios; Lindblad, Hans On the motion of the free surface of a liquid, Commun. Pure Appl. Math., Volume 53 (2000) no. 12, pp. 1536–1602 | MR | Zbl

[12] Coutand, Daniel; Shkoller, Steve Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Am. Math. Soc., Volume 20 (2007) no. 3, pp. 829–930 (electronic) | MR | Zbl

[13] Craig, Walter An existence theory for water waves and the Boussinesq and Korteweg–deVries scaling limits, Commun. Partial Differ. Equ., Volume 10 (1985) no. 8, pp. 787–1003 | MR | Zbl

[14] Craig, Walter; Sulem, Catherine Numerical simulation of gravity waves, J. Comput. Phys., Volume 108 (1993) no. 1, pp. 73–83 | MR | Zbl

[15] de Poyferré, Thibault; Nguyen, Huy Quang A paradifferential reduction for the gravity-capillary waves system at low regularity and applications, Bull. Soc. Math. Fr. (2017) (in press) | arXiv | MR | Zbl

[16] de Poyferré, Thibault; Nguyen, Huy Quang Strichartz estimates and local existence for the capillary water waves with non-Lipschitz initial velocity, J. Differ. Equ., Volume 261 (2016) no. 1, pp. 396–438 | MR | Zbl

[17] Grigis, Alain; Sjostrand, Johannes Microlocal Analysis for Pseudo-Differential Operators, Lond. Math. Soc. Lect. Note Ser., 1994 | MR | Zbl

[18] Nguyen, Huy Quang Sharp Strichartz estimates for water waves systems | arXiv | Zbl

[19] Lannes, David Well-posedness of the water-waves equations, J. Am. Math. Soc., Volume 18 (2005) no. 3, pp. 605–654 (electronic) | MR | Zbl

[20] Lannes, David Water Waves: Mathematical Analysis and Asymptotics, Math. Surv. Monogr., vol. 188, American Mathematical Society, Providence, RI, 2013 | DOI | MR | Zbl

[21] Lebeau, Gilles Singularités des solutions d'équations d'ondes semi-linéaires, Ann. Sci. Éc. Norm. Supér., Volume 25 (1992) no. 2, pp. 201–231 | Numdam | MR | Zbl

[22] Lindblad, Hans Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. Math. (2), Volume 162 (2005) no. 1, pp. 109–194 | MR | Zbl

[23] Métivier, Guy Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems, Cent. Ric. Mat. Ennio Giorgi, vol. 5, Edizioni della Normale, Pisa, 2008 | MR | Zbl

[24] Ming, Mei; Zhang, Zhifei Well-posedness of the water-wave problem with surface tension, J. Math. Pures Appl. (9), Volume 92 (2009) no. 5, pp. 429–455 | MR | Zbl

[25] Nalimov, V.I. The Cauchy–Poisson problem, Dinamika Zidkost. so Svobod. Granicami, Din. Sploš. Sredy, vol. 18, 1974, pp. 104–210 (254) | MR

[26] Shatah, Jalal; Zeng, Chongchun Geometry and a priori estimates for free boundary problems of the Euler equation, Commun. Pure Appl. Math., Volume 61 (2008) no. 5, pp. 698–744 | MR | Zbl

[27] Shatah, Jalal; Zeng, Chongchun A priori estimates for fluid interface problems, Commun. Pure Appl. Math., Volume 61 (2008) no. 6, pp. 848–876 | MR | Zbl

[28] Shatah, Jalal; Zeng, Chongchun Local well-posedness for fluid interface problems, Arch. Ration. Mech. Anal., Volume 199 (2011) no. 2, pp. 653–705 | MR | Zbl

[29] Tataru, Daniel Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Am. J. Math., Volume 122 (2000) no. 2, pp. 349–376 | MR | Zbl

[30] Tataru, Daniel Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II, Am. J. Math., Volume 123 (2001) no. 3, pp. 385–423 | MR | Zbl

[31] Wu, Sijue Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math., Volume 130 (1997) no. 1, pp. 39–72 | MR | Zbl

[32] Wu, Sijue Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Am. Math. Soc., Volume 12 (1999) no. 2, pp. 445–495 | MR | Zbl

[33] Yosihara, Hideaki Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. Res. Inst. Math. Sci., Volume 18 (1982) no. 1, pp. 49–96 | MR | Zbl

Cité par Sources :