Global (weak) solution of the chemotaxis-Navier–Stokes equations with non-homogeneous boundary conditions and logistic growth
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 1013-1039.

Le comportement d'une suspension bactérienne dans une goutte de liquide incompressible est décrit par les équations de chemotaxis-Navier–Stokes. Cet article introduit un échange d'oxygène entre la goutte et son environnement et une croissance logistique de la population bactérienne. Le système généralise le prototype

{nt+un=Δn(nc)+nn2,xΩ,t>0,ct+uc=Δcnc,xΩ,t>0,ut=Δu+uu+Pnφ,xΩ,t>0,u=0,xΩ,t>0
associé à la donnée initiale (n,c,u)(,0)=(n0,c0,u0) et aux conditions du bord
cν=1c,nν=ncν,u=0,xΩ,t>0
d'où ΩRN soit un domaine borné et convexe avec un bord lisse. En outre, φ soit un potentiel lisse gravitationnel. En supposant que la donnée initiale soit suffisamment régulière, on démontre l'existence d'une solution classique unique pour N=2 telle que nLp(Ω) est borné pour p< et l'existence d'une solution faible globale pour N=3.

In biology, the behaviour of a bacterial suspension in an incompressible fluid drop is modelled by the chemotaxis-Navier–Stokes equations. This paper introduces an exchange of oxygen between the drop and its environment and an additionally logistic growth of the bacteria population. A prototype system is given by

{nt+un=Δn(nc)+nn2,xΩ,t>0,ct+uc=Δcnc,xΩ,t>0,ut=Δu+uu+Pnφ,xΩ,t>0,u=0,xΩ,t>0
in conjunction with the initial data (n,c,u)(,0)=(n0,c0,u0) and the boundary conditions
cν=1c,nν=ncν,u=0,xΩ,t>0.
Here, the fluid drop is described by ΩRN being a bounded convex domain with smooth boundary. Moreover, φ is a given smooth gravitational potential.

Requiring sufficiently smooth initial data, the existence of a unique global classical solution for N=2 is proved, where nLp(Ω) is bounded in time for all p<, as well as the existence of a global weak solution for N=3.

DOI : 10.1016/j.anihpc.2016.08.003
Mots clés : Chemotaxis, Navier–Stokes, Non-homogeneous boundary conditions, Logistic growth
@article{AIHPC_2017__34_4_1013_0,
     author = {Braukhoff, Marcel},
     title = {Global (weak) solution of the {chemotaxis-Navier{\textendash}Stokes} equations with non-homogeneous boundary conditions and logistic growth},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1013--1039},
     publisher = {Elsevier},
     volume = {34},
     number = {4},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.08.003},
     mrnumber = {3661869},
     zbl = {1417.92028},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.08.003/}
}
TY  - JOUR
AU  - Braukhoff, Marcel
TI  - Global (weak) solution of the chemotaxis-Navier–Stokes equations with non-homogeneous boundary conditions and logistic growth
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1013
EP  - 1039
VL  - 34
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2016.08.003/
DO  - 10.1016/j.anihpc.2016.08.003
LA  - en
ID  - AIHPC_2017__34_4_1013_0
ER  - 
%0 Journal Article
%A Braukhoff, Marcel
%T Global (weak) solution of the chemotaxis-Navier–Stokes equations with non-homogeneous boundary conditions and logistic growth
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1013-1039
%V 34
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2016.08.003/
%R 10.1016/j.anihpc.2016.08.003
%G en
%F AIHPC_2017__34_4_1013_0
Braukhoff, Marcel. Global (weak) solution of the chemotaxis-Navier–Stokes equations with non-homogeneous boundary conditions and logistic growth. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 1013-1039. doi : 10.1016/j.anihpc.2016.08.003. http://www.numdam.org/articles/10.1016/j.anihpc.2016.08.003/

[1] Aida, Masashi; Yagi, Atsushi Global attractor for approximate system of chemotaxis and growth, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal., Volume 10 (2003) no. 1–3, pp. 309–315 (1918–2538/e) | MR | Zbl

[2] Atkins, Peter William; de Paula, Julio Physical Chemistry, Oxford University Press, 2006

[3] Calvez, Vincent; Carrillo, José A. Volume effects in the Keller–Segel model: energy estimates preventing blow-up, J. Math. Pures Appl. (9), Volume 86 (2006) no. 2, pp. 155–175 | DOI | MR | Zbl

[4] Chae, Myeongju; Kang, Kyungkeun; Lee, Jihoon Global existence and temporal decay in Keller–Segel models coupled to fluid equations, Commun. Partial Differ. Equ., Volume 39 (2014) no. 7, pp. 1205–1235 (1532-4133/e) | DOI | MR | Zbl

[5] Constantin, Peter; Foias, Ciprian Navier–Stokes Equations, University of Chicago Press, Chicago, IL etc., 1988 | DOI | MR | Zbl

[6] Dal Passo, Roberta; Garcke, Harald; Grün, Günther On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., Volume 29 (1998) no. 2, pp. 321–342 (1095-7154/e) | DOI | MR | Zbl

[7] Di Francesco, Marco; Lorz, Alexander; Markowich, Peter Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 4, pp. 1437–1453 (1553-5231/e) | DOI | MR | Zbl

[8] Duan, Renjun; Xiang, Zhaoyin A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, Int. Math. Res. Not., Volume 2014 (2014) no. 7, pp. 1833–1852 (1687-0247/e) | DOI | MR | Zbl

[9] Duan, Renjun; Lorz, Alexander; Markowich, Peter Global solutions to the coupled chemotaxis-fluid equations, Commun. Partial Differ. Equ., Volume 35 (2010) no. 9, pp. 1635–1673 (1532-4133/e) | DOI | MR | Zbl

[10] Espejo, Elio; Suzuki, Takashi Reaction terms avoiding aggregation in slow fluids, Nonlinear Anal., Real World Appl., Volume 21 (2015), pp. 110–126 | DOI | MR | Zbl

[11] Evans, Lawrence C. Partial Differential Equations, American Mathematical Society, Providence, RI, 2010 | MR | Zbl

[12] Friedman, Avner Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York etc., 1969 (262 pp) | MR | Zbl

[13] Fujita, H.; Kato, Tosio On the Navier–Stokes initial value problem. I, Arch. Ration. Mech. Anal., Volume 16 (1964), pp. 269–315 (1432-0673/e) | DOI | MR | Zbl

[14] Henry, Dan Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag. IV, Berlin–Heidelberg–New York, 1981 | DOI | MR | Zbl

[15] Ladyzhenskaya, O.A.; Solonnikov, V.A.; Ural'tseva, N.N. Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, American Mathematical Society (AMS). XI, Providence, RI, 1968 (translated from the Russian by S. Smith 648 pp) | MR | Zbl

[16] Lamberton, Damien Evolution equations associated to contraction semigroups in Lp spaces, J. Funct. Anal., Volume 72 (1987), pp. 252–262 | DOI | MR | Zbl

[17] Lions, J.L.; Magenes, E. Problèmes aux limites non homogenes et applications, vol. 1, 1968 | Zbl

[18] Meyer, Paul-André Probability and Potentials, Blaisdell Publishing Co., 1966 | MR | Zbl

[19] Mimura, Masayasu; Tsujikawa, Tohru Aggregating pattern dynamics in a chemotaxis model including growth, Phys. A, Stat. Mech. Appl., Volume 230 (1996) no. 3–4, pp. 499–543 | DOI

[20] Mora, Xavier Semilinear parabolic problems define semiflows on Ck spaces, Trans. Am. Math. Soc., Volume 278 (1983), pp. 21–55 (1088-6850/e) | DOI | MR | Zbl

[21] Nagai, Toshitaka; Senba, Takasi; Yoshida, Kiyoshi Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int., Volume 40 (1997) no. 3, pp. 411–433 | MR | Zbl

[22] Osaki, Koichi; Yagi, Atsushi Global existence for a chemotaxis-growth system in R2 , Adv. Math. Sci. Appl., Volume 12 (2002) no. 2, pp. 587–606 | MR | Zbl

[23] Osaki, Koichi; Tsujikawa, Tohru; Yagi, Atsushi; Mimura, Masayasu Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., Theory Methods Appl., Volume 51 (2002) no. 1, pp. 119–144 | DOI | MR | Zbl

[24] Simon, Jacques Compact sets in the space Lp(0,T;B) , Ann. Mat. Pura Appl. (4), Volume 146 (1987), pp. 65–96 (1618-1891/e) | DOI | MR | Zbl

[25] Sohr, Hermann The Navier–Stokes Equations. An Elementary Functional Analytic Approach, Birkhäuser, Basel, 2001 | MR | Zbl

[26] Tao, Youshan; Winkler, Michael Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 5, pp. 1901–1914 (1553-5231/e) | DOI | MR | Zbl

[27] Tao, Youshan; Winkler, Michael Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013) no. 1, pp. 157–178 | DOI | Numdam | MR | Zbl

[28] Tuval, Idan; Cisneros, Luis; Dombrowski, Christopher; Wolgemuth, Charles W.; Kessler, John O.; Goldstein, Raymond E. Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, Volume 102 (2005) no. 7, pp. 2277–2282 (1091-6490/e) | DOI | Zbl

[29] Dirk, Werner Funktionalanalysis, Springer, Berlin, 2011 (978-3-642-21017-4/ebook) | DOI | Zbl

[30] Winkler, Michael Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., Volume 248 (2010) no. 12, pp. 2889–2905 | DOI | MR | Zbl

[31] Winkler, Michael Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 35 (2010) no. 8, pp. 1516–1537 (1532-4133/e) | DOI | MR | Zbl

[32] Winkler, Michael Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops, Commun. Partial Differ. Equ., Volume 37 (2012) no. 1–3, pp. 319–351 (1532-4133/e) | DOI | MR | Zbl

[33] Winkler, Michael Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 5, pp. 1329–1352 | DOI | Numdam | MR | Zbl

[34] Winkler, Michael Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 4, pp. 3789–3828 (1432-0835/e) | DOI | MR | Zbl

[35] Michael Winkler, A two-dimensional chemotaxis-Stokes system with rotational flux: global solvability, eventual smoothness and stabilization, preprint.

[36] Michael Winkler, Youshan Tao, Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system, preprint. | MR

Cité par Sources :