Long time behavior for a dissipative shallow water model
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 3, pp. 731-757.

Nous considérons le modèle d'eau peu profonde à deux dimensions dérivé dans [29], décrivant le mouvement d'un fluide incompressible, confinèe dans un bassin peu profond, avec topographie du fond variable. Nous construisons des variétés inertielles approximatives pour le système dynamique associé et nous estimons son ordre. Finalement, pour le espace R2 avec des conditions appropriées pour la force, nous prouvons la L2 décroissance asymptotique des solutions faibles.

We consider the two-dimensional shallow water model derived in [29], describing the motion of an incompressible fluid, confined in a shallow basin, with varying bottom topography. We construct the approximate inertial manifolds for the associated dynamical system and estimate its order. Finally, working in the whole space R2, under suitable conditions on the time dependent forcing term, we prove the L2 asymptotic decay of the weak solutions.

DOI : 10.1016/j.anihpc.2016.05.003
Mots clés : Inertial manifolds, Attractors, Time decay, Fourier splitting method, Incompressible viscous fluids, Navier–Stokes equations
@article{AIHPC_2017__34_3_731_0,
     author = {Sciacca, V. and Schonbek, M.E. and Sammartino, M.},
     title = {Long time behavior for a dissipative shallow water model},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {731--757},
     publisher = {Elsevier},
     volume = {34},
     number = {3},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.05.003},
     zbl = {1383.35174},
     mrnumber = {3633743},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.05.003/}
}
TY  - JOUR
AU  - Sciacca, V.
AU  - Schonbek, M.E.
AU  - Sammartino, M.
TI  - Long time behavior for a dissipative shallow water model
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 731
EP  - 757
VL  - 34
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2016.05.003/
DO  - 10.1016/j.anihpc.2016.05.003
LA  - en
ID  - AIHPC_2017__34_3_731_0
ER  - 
%0 Journal Article
%A Sciacca, V.
%A Schonbek, M.E.
%A Sammartino, M.
%T Long time behavior for a dissipative shallow water model
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 731-757
%V 34
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2016.05.003/
%R 10.1016/j.anihpc.2016.05.003
%G en
%F AIHPC_2017__34_3_731_0
Sciacca, V.; Schonbek, M.E.; Sammartino, M. Long time behavior for a dissipative shallow water model. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 3, pp. 731-757. doi : 10.1016/j.anihpc.2016.05.003. http://www.numdam.org/articles/10.1016/j.anihpc.2016.05.003/

[1] Agmon, S. Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies, vol. 2, D. Van Nostrand Co., Inc., Princeton, N.J.–Toronto–London, 1965 | MR | Zbl

[2] Borchers, W.; Miyakawa, T. L2-decay for Navier–Stokes flows in unbounded domains, with application to exterior stationary flows, Arch. Ration. Mech. Anal., Volume 118 (1992) no. 3, pp. 273–295 | DOI | MR | Zbl

[3] Bresch, D.; Métivier, G. Global existence and uniqueness for the lake equations with vanishing topography: elliptic estimates for degenerate equations, Nonlinearity, Volume 19 (2006) no. 3, pp. 591–610 | DOI | MR | Zbl

[4] Brézis, H.; Gallouet, T. Nonlinear Schrödinger evolution equation, Nonlinear Anal., Volume 4 (1980) no. 4, pp. 677–681 | DOI | MR | Zbl

[5] Camassa, R.; Holm, D.; Levermore, C. Long-time effects of bottom topography in shallow water, Phys. D, Nonlinear Phenom., Volume 98 (1996) no. 2–4, pp. 258–286 | MR | Zbl

[6] Debussche, A.; Dubois, T. Approximation of exponential order of the attractor of a turbulent flow, Phys. D, Nonlinear Phenom., Volume 72 (1994) no. 4, pp. 372–389 | DOI | MR | Zbl

[7] Debussche, A.; Dubois, T.; Temam, R. The nonlinear Galerkin method: a multiscale method applied to the simulation of homogeneous turbulent flow, Theor. Comput. Fluid Dyn., Volume 7 (1995), pp. 279–315 | DOI | Zbl

[8] Debussche, A.; Temam, R. Convergent families of approximate inertial manifolds, J. Math. Pures Appl., Volume 73 (1994) no. 5, pp. 489–522 | MR | Zbl

[9] Evans, L. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010 | MR | Zbl

[10] Foias, C.; Manley, O.; Rosa, R.; Temam, R. Navier–Stokes Equations and Turbulence, Encyclopedia of Mathematics and Its Applications, vol. 83, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[11] Foias, C.; Manley, O.; Temam, R. Modelling of the interaction of small and large eddies in two-dimensional turbulent flows, Modél. Math. Anal. Numér., Volume 22 (1988) no. 1, pp. 93–118 | DOI | Numdam | MR | Zbl

[12] Foias, C.; Sell, G.; Temam, R. Inertial manifolds for nonlinear evolutionary equations, J. Differ. Equ., Volume 73 (1988) no. 2, pp. 309–353 | DOI | MR | Zbl

[13] García-Archilla, B.; Novo, J.; Titi, E.S. Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds, SIAM J. Numer. Anal., Volume 35 (1998) no. 3, pp. 941–972 | DOI | MR | Zbl

[14] Henry, D. Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin–New York, 1981 | DOI | MR | Zbl

[15] Heywood, J. The Navier–Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J., Volume 29 (1980) no. 5, pp. 639–681 | DOI | MR | Zbl

[16] Jiu, Q.; Niu, D. Vanishing viscous limits for the 2D lake equations with Navier boundary conditions, J. Math. Anal. Appl., Volume 338 (2008) no. 2, pp. 1070–1080 | MR | Zbl

[17] Jiu, Q.; Niu, D.; Wu, J. Vanishing viscosity limits for the degenerate lake equations with Navier boundary conditions, Nonlinearity, Volume 25 (2012) no. 3, pp. 641–655 | MR | Zbl

[18] Jolly, M.; Margolin, L.; Titi, E. On the effectiveness of the approximate inertial manifold – A computational study, Theor. Comput. Fluid Dyn., Volume 7 (1995), pp. 243–260 | Zbl

[19] Jolly, M.; Xiong, C. On computing the long-time solution of the two-dimensional Navier–Stokes equations, Theor. Comput. Fluid Dyn., Volume 7 (1995), pp. 261–278 | DOI | Zbl

[20] Kajikiya, R.; Miyakawa, T. On L2 decay of weak solutions of the Navier–Stokes equations in Rn , Math. Z., Volume 192 (1986) no. 1, pp. 135–148 | DOI | MR | Zbl

[21] Karch, G.; Pilarczyk, D.; Schonbek, M. L2-asymptotic stability of mild solutions to Navier–Stokes system in R3 , 2013 | arXiv

[22] Kato, T. Strong Lp-solutions of the Navier–Stokes equation in Rm, with applications to weak solutions, Math. Z., Volume 187 (1984) no. 4, pp. 471–480 | DOI | MR | Zbl

[23] Kozono, H.; Ogawa, T. Two-dimensional Navier–Stokes flow in unbounded domains, Math. Ann., Volume 297 (1993) no. 1, pp. 1–31 | DOI | MR | Zbl

[24] Kukavica, I.; Lombardo, M.C.; Sammartino, M. Zero viscosity limit for analytic solutions of the primitive equations, Arch. Ration. Mech. Anal. (2016) | DOI | MR | Zbl

[25] Leray, J. Etude de diverses equations integrales non lineaires et de quelques problemes que pose l'hydrodynamique, J. Math. Pures Appl., Volume 9 (1933), pp. 1–82 | Numdam | Zbl

[26] Leray, J. Sur le mouvement d'un liquide visqeux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193–248 | DOI | JFM | MR

[27] Levermore, C.; Oliver, M.; Titi, E. Global well-posedness for the lake equations, Phys. D, Nonlinear Phenom., Volume 98 (1996) no. 2–4, pp. 492–509 | Zbl

[28] Levermore, C.; Oliver, M.; Titi, E.S. Global well-posedness for models of shallow water in a basin with a varying bottom, Indiana Univ. Math. J., Volume 45 (1996) no. 2, pp. 479–510 | DOI | MR | Zbl

[29] Levermore, C.; Sammartino, M. A shallow water model with eddy viscosity for basins with varying bottom topography, Nonlinearity, Volume 14 (2001) no. 6, pp. 1493–1515 | DOI | MR | Zbl

[30] Maremonti, P. Some results on the asymptotic behavior of Hopf weak solutions to the Navier–Stokes equations in unbounded domains, Math. Z., Volume 210 (1992) no. 1, pp. 1–22 | DOI | MR | Zbl

[31] Margolin, L.G.; Titi, E.S.; Wynne, S. The postprocessing Galerkin and nonlinear Galerkin methods—a truncation analysis point of view, SIAM J. Numer. Anal., Volume 41 (2003) no. 2, pp. 695–714 | DOI | MR | Zbl

[32] Masuda, K. Weak solutions of Navier–Stokes equations, Tohoku Math. J. (2), Volume 36 (1984) no. 4, pp. 623–646 | DOI | MR | Zbl

[33] Métivier, G. Valeurs propres d'opérateurs définis par la restriction de systèmes variationnels à des sous-espaces, J. Math. Pures Appl., Volume 57 (1978) no. 2, pp. 133–156 | MR | Zbl

[34] Novo, J.; Titi, E.S.; Wynne, S. Efficient methods using high accuracy approximate inertial manifolds, Numer. Math., Volume 87 (2001) no. 3, pp. 523–554 | DOI | MR | Zbl

[35] Ogawa, T.; Rajopadhye, S.; Schonbek, M. Energy decay for a weak solution of the Navier–Stokes equation with slowly varying external forces, J. Funct. Anal., Volume 144 (1997) no. 2, pp. 325–358 | DOI | MR | Zbl

[36] Ott, W. The global attractor associated with the viscous lake equations, Nonlinearity, Volume 17 (2004) no. 3, pp. 1041–1055 | MR | Zbl

[37] Reed, M.; Simon, B. Fourier Analysis, Self-Adjointness, Methods of Modern Mathematical Physics, vol. II, Academic Press, New York–London–San Francisco, 1975 | MR | Zbl

[38] Robinson, J. Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[39] Rosa, R. Approximate inertial manifolds of exponential order, Discrete Contin. Dyn. Syst., Volume 1 (1995) no. 3, pp. 421–448 | DOI | MR | Zbl

[40] Sammartino, M.; Sciacca, V. WASCOM 2001–11th Conference on Waves and Stability in Continuous Media, World Sci. Publ., River Edge, NJ (2002), pp. 515–520 (Porto Ercole) | DOI | MR

[41] Sammartino, M.; Sciacca, V. Approximate inertial manifolds for thermodiffusion equations, WASCOM 2003–12th Conference on Waves and Stability in Continuous Media, World Sci. Publ., River Edge, NJ, 2004, pp. 494–499 | DOI | MR | Zbl

[42] Schonbek, M. L2 decay for weak solutions of the Navier–Stokes equations, Arch. Ration. Mech. Anal., Volume 88 (1985) no. 3, pp. 209–222 | DOI | MR | Zbl

[43] Schonbek, M. Large time behaviour of solutions to the Navier–Stokes equations, Commun. Partial Differ. Equ., Volume 11 (1986) no. 7, pp. 733–763 | DOI | MR | Zbl

[44] Sell, G.; You, Y. Dynamics of Evolutionary Equations, Applied Mathematical Sciences, vol. 143, Springer-Verlag, New York, 2002 | MR | Zbl

[45] Temam, R. Navier–Stokes Equations. Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam–New York–Oxford, 1977 | MR | Zbl

[46] Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997 | MR | Zbl

[47] Titi, S. On approximate inertial manifolds to the Navier–Stokes equations, J. Math. Anal. Appl., Volume 149 (1990) no. 2, pp. 540–557 | DOI | MR | Zbl

[48] Ukai, S. A solution formula for the Stokes equation in R+n , Commun. Pure Appl. Math., Volume 40 (1987) no. 5, pp. 611–621 | DOI | MR | Zbl

[49] Wiegner, M. Decay results for weak solutions of the Navier–Stokes equations on Rn , J. Lond. Math. Soc., Volume 35 (1987) no. 2, pp. 303–313 | DOI | MR | Zbl

Cité par Sources :