We consider a family of positive solutions to the system of k components
Keywords: Nonlinear Schrödinger systems, Harmonic maps into singular manifolds, Competition and segregation, Point-wise asymptotic estimates, Regularity of free boundaries
@article{AIHPC_2017__34_3_625_0, author = {Soave, Nicola and Zilio, Alessandro}, title = {On phase separation in systems of coupled elliptic equations: {Asymptotic} analysis and geometric aspects}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {625--654}, publisher = {Elsevier}, volume = {34}, number = {3}, year = {2017}, doi = {10.1016/j.anihpc.2016.04.001}, mrnumber = {3633738}, zbl = {1417.35028}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.04.001/} }
TY - JOUR AU - Soave, Nicola AU - Zilio, Alessandro TI - On phase separation in systems of coupled elliptic equations: Asymptotic analysis and geometric aspects JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 625 EP - 654 VL - 34 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2016.04.001/ DO - 10.1016/j.anihpc.2016.04.001 LA - en ID - AIHPC_2017__34_3_625_0 ER -
%0 Journal Article %A Soave, Nicola %A Zilio, Alessandro %T On phase separation in systems of coupled elliptic equations: Asymptotic analysis and geometric aspects %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 625-654 %V 34 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2016.04.001/ %R 10.1016/j.anihpc.2016.04.001 %G en %F AIHPC_2017__34_3_625_0
Soave, Nicola; Zilio, Alessandro. On phase separation in systems of coupled elliptic equations: Asymptotic analysis and geometric aspects. Annales de l'I.H.P. Analyse non linéaire, Volume 34 (2017) no. 3, pp. 625-654. doi : 10.1016/j.anihpc.2016.04.001. http://www.numdam.org/articles/10.1016/j.anihpc.2016.04.001/
[1] Partially coherent solitons on a finite background, Phys. Rev. Lett., Volume 82 (1999), pp. 2661 | DOI
[2] On phase-separation models: asymptotics and qualitative properties, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 1, pp. 163–200 | DOI | MR | Zbl
[3] On entire solutions of an elliptic system modeling phase separations, Adv. Math., Volume 243 (2013), pp. 102–126 | DOI | MR | Zbl
[4] Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, J. Am. Math. Soc., Volume 21 (2008) no. 3, pp. 847–862 | DOI | MR | Zbl
[5] Analysis on the junctions of domain walls, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 3, pp. 915–929 | DOI | MR | Zbl
[6] Segregated nodal domains of two-dimensional multispecies Bose–Einstein condensates, Phys. D, Volume 196 (2004) no. 3–4, pp. 341–361 | MR | Zbl
[7] Nehari's problem and competing species systems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 19 (2002) no. 6, pp. 871–888 | DOI | Numdam | MR | Zbl
[8] An optimal partition problem related to nonlinear eigenvalues, J. Funct. Anal., Volume 198 (2003) no. 1, pp. 160–196 | DOI | MR | Zbl
[9] Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., Volume 195 (2005) no. 2, pp. 524–560 | DOI | MR | Zbl
[10] The limit equation for the Gross–Pitaevskii equations and S. Terracini's conjecture, J. Funct. Anal., Volume 262 (2012) no. 3, pp. 1087–1131 | DOI | MR | Zbl
[11] Geometric inequalities and symmetry results for elliptic systems, Discrete Contin. Dyn. Syst., Volume 33 (2013) no. 8, pp. 3473–3496 | DOI | MR | Zbl
[12] Some symmetry results for entire solutions of an elliptic system arising in phase separation, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 6, pp. 2505–2511 | DOI | MR | Zbl
[13] Monotonicity and 1-dimensional symmetry for solutions of an elliptic system arising in Bose–Einstein condensation, Arch. Ration. Mech. Anal., Volume 213 (2014) no. 1, pp. 287–326 | DOI | MR | Zbl
[14] Geometric measure of singular sets of elliptic equations, Commun. Pure Appl. Math., Volume 51 (1998) no. 11–12, pp. 1425–1443 | MR | Zbl
[15] A geometric approach to the topological disk theorem of Reifenberg, Pac. J. Math., Volume 233 (2007) no. 2, pp. 321–339 | DOI | MR | Zbl
[16] Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Commun. Pure Appl. Math., Volume 63 (2010) no. 3, pp. 267–302 | DOI | MR | Zbl
[17] Existence and regularity of solutions to optimal partitions problems involving Laplacian eigenvalues, Arch. Ration. Mech. Anal., Volume 220 (2016) no. 1, pp. 363–443 | DOI | MR
[18] Hölder bounds and regularity of emerging free boundaries for strongly competing Schrödinger equations with nontrivial grouping, Nonlinear Anal., Theory Methods Appl., Volume 138 (2016), pp. 388–427 | DOI | MR | Zbl
[19] Liouville theorems and 1-dimensional symmetry for solutions of an elliptic system modelling phase separation, Adv. Math., Volume 279 (2015), pp. 29–66 | DOI | MR | Zbl
[20] N. Soave, A. Zilio, Multidimensional solutions for an elliptic system modelling phase separation, preprint, 2015. | MR
[21] Uniform bounds for strongly competing systems: the optimal Lipschitz case, Arch. Ration. Mech. Anal., Volume 218 (2015) no. 2, pp. 647–697 | DOI | MR | Zbl
[22] Entire solutions with exponential growth for an elliptic system modelling phase separation, Nonlinearity, Volume 27 (2014) no. 2, pp. 305–342 | DOI | MR | Zbl
[23] Regularity of the nodal set of segregated critical configurations under a weak reflection law, Calc. Var. Partial Differ. Equ., Volume 45 (2012) no. 3–4, pp. 273–317 | MR | Zbl
[24] Sign-changing solutions of competition–diffusion elliptic systems and optimal partition problems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 2, pp. 279–300 | DOI | Numdam | MR | Zbl
[25] Phase separation of Bose–Einstein condensates, Phys. Rev. Lett., Volume 81 (1998), pp. 5718–5721 | DOI
[26] On the De Giorgi type conjecture for an elliptic system modeling phase separation, Commun. Partial Differ. Equ., Volume 39 (2014) no. 4, pp. 696–739 | DOI | MR | Zbl
[27] Harmonic approximation and improvement of flatness in a singular perturbation problem, Manuscr. Math., Volume 146 (2015) no. 1–2, pp. 281–298 | MR | Zbl
[28] Asymptotic behavior of solutions of planar elliptic systems with strong competition, Nonlinearity, Volume 21 (2008) no. 2, pp. 305–317 | MR | Zbl
Cited by Sources: