Asymptotic stability of solitary waves in generalized Gross–Neveu model
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 157-196.

For the nonlinear Dirac equation in (1+1)D with scalar self-interaction (Gross–Neveu model), with quintic and higher order nonlinearities (and within certain range of the parameters), we prove that solitary wave solutions are asymptotically stable in the “even” subspace of perturbations (to ignore translations and eigenvalues ±2ωi). The asymptotic stability is proved for initial data in H1. The approach is based on the spectral information about the linearization at solitary waves which we justify by numerical simulations. For the proof, we develop the spectral theory for the linearized operators and obtain appropriate estimates in mixed Lebesgue spaces, with and without weights.

DOI : 10.1016/j.anihpc.2015.11.001
Mots clés : Gross–Neveu model, Nonlinear Dirac equation, Solitary waves, Asymptotic stability, Weighted spaces
@article{AIHPC_2017__34_1_157_0,
     author = {Comech, Andrew and Phan, Tuoc Van and Stefanov, Atanas},
     title = {Asymptotic stability of solitary waves in generalized {Gross{\textendash}Neveu} model},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {157--196},
     publisher = {Elsevier},
     volume = {34},
     number = {1},
     year = {2017},
     doi = {10.1016/j.anihpc.2015.11.001},
     mrnumber = {3592683},
     zbl = {1357.35083},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.11.001/}
}
TY  - JOUR
AU  - Comech, Andrew
AU  - Phan, Tuoc Van
AU  - Stefanov, Atanas
TI  - Asymptotic stability of solitary waves in generalized Gross–Neveu model
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 157
EP  - 196
VL  - 34
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2015.11.001/
DO  - 10.1016/j.anihpc.2015.11.001
LA  - en
ID  - AIHPC_2017__34_1_157_0
ER  - 
%0 Journal Article
%A Comech, Andrew
%A Phan, Tuoc Van
%A Stefanov, Atanas
%T Asymptotic stability of solitary waves in generalized Gross–Neveu model
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 157-196
%V 34
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2015.11.001/
%R 10.1016/j.anihpc.2015.11.001
%G en
%F AIHPC_2017__34_1_157_0
Comech, Andrew; Phan, Tuoc Van; Stefanov, Atanas. Asymptotic stability of solitary waves in generalized Gross–Neveu model. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 157-196. doi : 10.1016/j.anihpc.2015.11.001. http://www.numdam.org/articles/10.1016/j.anihpc.2015.11.001/

[1] Berkolaiko, G.; Comech, A. On spectral stability of solitary waves of nonlinear Dirac equation in 1D, Math. Model. Nat. Phenom., Volume 7 (2012), pp. 13–31 | DOI | MR | Zbl

[2] N. Boussaid, A. Comech, On spectral stability of nonlinear Dirac equation, 2012, ArXiv e-prints.

[3] Boussaid, N.; Cuccagna, S. On stability of standing waves of nonlinear Dirac equations, Commun. Partial Differ. Equ., Volume 37 (2012), pp. 1001–1056 | DOI | MR | Zbl

[4] Berkolaiko, G.; Comech, A.; Sukhtayev, A. Vakhitov–Kolokolov and energy vanishing conditions for linear instability of solitary waves in models of classical self-interacting spinor fields, Nonlinearity, Volume 28 (2015), pp. 577–592 | DOI | MR | Zbl

[5] Beceanu, M. New estimates for a time-dependent Schrödinger equation, Duke Math. J., Volume 159 (2011), pp. 417–477 | DOI | MR | Zbl

[6] Buslaev, V.S.; Perel'man, G.S. Méthodes semi-classiques, vol. 2, Astérisque, Volume 210 (1992), pp. 49–63 (Nantes, 1991) | Numdam | MR | Zbl

[7] Buslaev, V.S.; Perel'man, G.S. Scattering for the nonlinear Schrödinger equation: states that are close to a soliton, Algebra Anal., Volume 4 (1992), pp. 63–102 | MR | Zbl

[8] Barashenkov, I.V.; Pelinovsky, D.E.; Zemlyanaya, E.V. Vibrations and oscillatory instabilities of gap solitons, Phys. Rev. Lett., Volume 80 (1998), pp. 5117–5120 | DOI

[9] Candy, T. Global existence for an L2 critical nonlinear Dirac equation in one dimension, Adv. Differ. Equ., Volume 16 (2011), pp. 643–666 | MR | Zbl

[10] Comech, A.; Cuccagna, S.; Pelinovsky, D.E. Nonlinear instability of a critical traveling wave in the generalized Korteweg–de Vries equation, SIAM J. Math. Anal., Volume 39 (2007), pp. 1–33 | DOI | MR | Zbl

[11] Comech, A.; Guan, M.; Gustafson, S. On linear instability of solitary waves for the nonlinear Dirac equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014), pp. 639–654 | Numdam | MR | Zbl

[12] A. Comech, On the meaning of the Vakhitov–Kolokolov stability criterion for the nonlinear Dirac equation, 2011, ArXiv e-prints.

[13] Cuccagna, S. On asymptotic stability in energy space of ground states of NLS in 1D, J. Differ. Equ., Volume 245 (2008), pp. 653–691 | DOI | MR | Zbl

[14] Cazenave, T.; Vázquez, L. Existence of localized solutions for a classical nonlinear Dirac field, Commun. Math. Phys., Volume 105 (1986), pp. 35–47 | DOI | MR | Zbl

[15] Finkelstein, R.; Fronsdal, C.; Kaus, P. Nonlinear spinor field, Phys. Rev., Volume 103 (1956), pp. 1571–1579 | DOI | Zbl

[16] Finkelstein, R.; LeLevier, R.; Ruderman, M. Nonlinear spinor fields, Phys. Rev., Volume 83 (1951), pp. 326–332 | DOI | MR | Zbl

[17] Heisenberg, W. Quantum theory of fields and elementary particles, Rev. Mod. Phys., Volume 29 (1957), pp. 269–278 | DOI | MR | Zbl

[18] Huh, H. Global solutions to Gross–Neveu equation, Lett. Math. Phys., Volume 103 (2013), pp. 927–931 | DOI | MR | Zbl

[19] Ivanenko, D.D. Notes to the theory of interaction via particles, Zh. Eksp. Teor. Fiz., Volume 8 (1938), pp. 260–266

[20] Krieger, J.; Nakanishi, K.; Schlag, W. Global dynamics above the ground state energy for the one-dimensional NLKG equation, Math. Z., Volume 272 (2012), pp. 297–316 | DOI | MR | Zbl

[21] Kopylova, E.A. Weighted energy decay for 1D Dirac equation, Dyn. Partial Differ. Equ., Volume 8 (2011), pp. 113–125 | DOI | MR | Zbl

[22] Kapitula, T.; Sandstede, B. Edge bifurcations for near integrable systems via Evans function techniques, SIAM J. Math. Anal., Volume 33 (2002), pp. 1117–1143 | DOI | MR | Zbl

[23] Lee, S.Y.; Gavrielides, A. Quantization of the localized solutions in two-dimensional field theories of massive fermions, Phys. Rev. D, Volume 12 (1975), pp. 3880–3886

[24] Mizumachi, T. Asymptotic stability of small solitary waves to 1D nonlinear Schrödinger equations with potential, J. Math. Kyoto Univ., Volume 48 (2008), pp. 471–497 | MR | Zbl

[25] Machihara, S.; Nakanishi, K.; Tsugawa, K. Well-posedness for nonlinear Dirac equations in one dimension, Kyoto J. Math., Volume 50 (2010), pp. 403–451 | DOI | MR | Zbl

[26] Nakamura, M.; Ozawa, T. The Cauchy problem for nonlinear Klein–Gordon equations in the Sobolev spaces, Publ. Res. Inst. Math. Sci., Volume 37 (2001), pp. 255–293 | DOI | MR | Zbl

[27] Nakanishi, K.; Schlag, W. Global dynamics above the ground state energy for the cubic NLS equation in 3D, Calc. Var. Partial Differ. Equ., Volume 44 (2012), pp. 1–45 | DOI | MR | Zbl

[28] Pelinovsky, D. Survey on global existence in the nonlinear Dirac equations in one spatial dimension, Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, vol. B26, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, pp. 37–50 | MR | Zbl

[29] Pelinovsky, D.E.; Stefanov, A. Asymptotic stability of small gap solitons in nonlinear Dirac equations, J. Math. Phys., Volume 53 (2012) | DOI | MR | Zbl

[30] Soler, M. Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, Volume 1 (1970), pp. 2766–2769 | DOI

[31] S. Shao, N.R. Quintero, F.G. Mertens, F. Cooper, A. Khare, A. Saxena, Stability of solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity, 2014, ArXiv e-prints.

[32] Smith, H.F.; Sogge, C.D. Global Strichartz estimates for nontrapping perturbations of the Laplacian, Commun. Partial Differ. Equ., Volume 25 (2000), pp. 2171–2183 | DOI | MR | Zbl

[33] Selberg, S.; Tesfahun, A. Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differ. Integral Equ., Volume 23 (2010), pp. 265–278 | MR | Zbl

[34] Thaller, B. The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992 | MR | Zbl

[35] Thirring, W.E. A soluble relativistic field theory, Ann. Phys., Volume 3 (1958), pp. 91–112 | DOI | MR | Zbl

[36] Vakhitov, N.G.; Kolokolov, A.A. Stationary solutions of the wave equation in the medium with nonlinearity saturation, Radiophys. Quantum Electron., Volume 16 (1973), pp. 783–789 | DOI

Cité par Sources :