Nous démontrons l'existence des solutions auto-similaires avec queues lourdes pour l'équation de coagulation de Smoluchowski avec un noyau K satisfaisant
Pour la démonstration de l'existence nous prenons une solution auto-similaire
We show the existence of self-similar solutions with fat tails for Smoluchowski's coagulation equation for homogeneous kernels satisfying
For the proof of existence we take a self-similar solution
@article{AIHPC_2016__33_5_1223_0, author = {Niethammer, B. and Throm, S. and Vel\'azquez, J.J.L.}, title = {Self-similar solutions with fat tails for {Smoluchowski's} coagulation equation with singular kernels}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1223--1257}, publisher = {Elsevier}, volume = {33}, number = {5}, year = {2016}, doi = {10.1016/j.anihpc.2015.04.002}, mrnumber = {3542612}, zbl = {1357.35073}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2015.04.002/} }
TY - JOUR AU - Niethammer, B. AU - Throm, S. AU - Velázquez, J.J.L. TI - Self-similar solutions with fat tails for Smoluchowski's coagulation equation with singular kernels JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 1223 EP - 1257 VL - 33 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2015.04.002/ DO - 10.1016/j.anihpc.2015.04.002 LA - en ID - AIHPC_2016__33_5_1223_0 ER -
%0 Journal Article %A Niethammer, B. %A Throm, S. %A Velázquez, J.J.L. %T Self-similar solutions with fat tails for Smoluchowski's coagulation equation with singular kernels %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 1223-1257 %V 33 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2015.04.002/ %R 10.1016/j.anihpc.2015.04.002 %G en %F AIHPC_2016__33_5_1223_0
Niethammer, B.; Throm, S.; Velázquez, J.J.L. Self-similar solutions with fat tails for Smoluchowski's coagulation equation with singular kernels. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 5, pp. 1223-1257. doi : 10.1016/j.anihpc.2015.04.002. https://www.numdam.org/articles/10.1016/j.anihpc.2015.04.002/
[1] Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists, Bernoulli, Volume 5 (1999) no. 1, pp. 3–48 MR 1673235 (2001c:60153) | DOI | MR | Zbl
[2] Regularity, asymptotic behavior and partial uniqueness for Smoluchowski's coagulation equation, Rev. Mat. Iberoam., Volume 27 (2011) no. 3, pp. 503–564 | MR | Zbl
[3] A general mathematical survey of the coagulation equation, Topics in Current Aerosol Research (Part 2), International Reviews in Aerosol Physics and Chemistry, Oxford University Press, Oxford, 1972, pp. 203–376
[4] Dust and self-similarity for the Smoluchowski coagulation equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 3, pp. 331–362 MR 2217655 (2007a:82043) | DOI | Numdam | MR | Zbl
[5] On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 1, pp. 99–125 MR 2114413 (2006b:35034) | DOI | Numdam | MR | Zbl
[6] Existence of self-similar solutions to Smoluchowski's coagulation equation, Commun. Math. Phys., Volume 256 (2005) no. 3, pp. 589–609 MR 2161272 (2007a:82061) | DOI | MR | Zbl
[7] Local properties of self-similar solutions to Smoluchowski's coagulation equation with sum kernels, Proc. R. Soc. Edinb., Sect. A, Volume 136 (2006) no. 3, pp. 485–508 MR 2227805 (2007f:45012) | DOI | MR | Zbl
[8] On the Boltzmann equation for diffusively excited granular media, Commun. Math. Phys., Volume 246 (2004) no. 3, pp. 503–541 MR 2053942 (2005b:82076) | DOI | MR | Zbl
[9] Approach to self-similarity in Smoluchowski's coagulation equations, Commun. Pure Appl. Math., Volume 57 (2004) no. 9, pp. 1197–1232 MR 2059679 (2005i:82051) | DOI | MR | Zbl
[10] Self-similar solutions with fat tails for Smoluchowski's coagulation equation with singular kernels (preprint, available at) | arXiv | Numdam | MR | Zbl
[11] Self-similar solutions with fat tails for a coagulation equation with diagonal kernel, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 9–10, pp. 559–562 (MR 2802924) | MR | Zbl
[12] Self-similar solutions with fat tails for Smoluchowski's coagulation equation with locally bounded kernels, Commun. Math. Phys., Volume 318 (2013), pp. 505–532 | MR
[13] Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Phys. Z. Sowjetunion, Volume 17 (1916), pp. 557–599
- Non-equilibrium Stationary Solutions for Multicomponent Coagulation Systems with Injection, Journal of Statistical Physics, Volume 190 (2023) no. 5 | DOI:10.1007/s10955-023-03107-5
- Homoenergetic solutions of the Boltzmann equation: the case of simple-shear deformations, Mathematics in Engineering, Volume 5 (2022) no. 1, p. 1 | DOI:10.3934/mine.2023019
- Stationary Non-equilibrium Solutions for Coagulation Systems, Archive for Rational Mechanics and Analysis, Volume 240 (2021) no. 2, p. 809 | DOI:10.1007/s00205-021-01623-w
- Stability and Uniqueness of Self-similar Profiles in
Spaces for Perturbations of the Constant Kernel in Smoluchowski’s Coagulation Equation, Communications in Mathematical Physics, Volume 383 (2021) no. 3, p. 1361 | DOI:10.1007/s00220-021-03967-6 - The scaling hypothesis for Smoluchowski's coagulation equation with bounded perturbations of the constant kernel, Journal of Differential Equations, Volume 270 (2021), p. 285 | DOI:10.1016/j.jde.2020.07.036
- Uniqueness of fat-tailed self-similar profiles to Smoluchowski’s coagulation equation for a perturbation of the constant kernel, Memoirs of the American Mathematical Society, Volume 271 (2021) no. 1328 | DOI:10.1090/memo/1328
- Self-Similar Profiles for Homoenergetic Solutions of the Boltzmann Equation: Particle Velocity Distribution and Entropy, Archive for Rational Mechanics and Analysis, Volume 231 (2019) no. 2, p. 787 | DOI:10.1007/s00205-018-1289-2
- Self-Similar Solutions to Coagulation Equations with Time-Dependent Tails: The Case of Homogeneity One, Archive for Rational Mechanics and Analysis, Volume 233 (2019) no. 1, p. 1 | DOI:10.1007/s00205-018-01353-6
- Self-similar asymptotic behavior for the solutions of a linear coagulation equation, Journal of Differential Equations, Volume 266 (2019) no. 1, p. 653 | DOI:10.1016/j.jde.2018.07.059
- Self-similar Spreading in a Merging-Splitting Model of Animal Group Size, Journal of Statistical Physics, Volume 175 (2019) no. 6, p. 1311 | DOI:10.1007/s10955-019-02280-w
- Self-similar solutions to coagulation equations with time-dependent tails: The case of homogeneity smaller than one, Communications in Partial Differential Equations, Volume 43 (2018) no. 1, p. 82 | DOI:10.1080/03605302.2018.1437447
- Tail Behaviour of Self-Similar Profiles with Infinite Mass for Smoluchowski’s Coagulation Equation, Journal of Statistical Physics, Volume 170 (2018) no. 6, p. 1215 | DOI:10.1007/s10955-018-1980-6
- Mathematical theory of exchange-driven growth, Nonlinearity, Volume 31 (2018) no. 7, p. 3460 | DOI:10.1088/1361-6544/aaba8d
- On Self-Similar Solutions to a Kinetic Equation Arising in Weak Turbulence Theory for the Nonlinear Schrödinger Equation, Journal of Statistical Physics, Volume 163 (2016) no. 6, p. 1350 | DOI:10.1007/s10955-016-1505-0
Cité par 14 documents. Sources : Crossref