Generic properties of the spectrum of the Stokes system with Dirichlet boundary condition in R3
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 119-167.

Let (SDΩ) be the Stokes operator defined in a bounded domain Ω of R3 with Dirichlet boundary conditions. We prove that, generically with respect to the domain Ω with C5 boundary, the spectrum of (SDΩ) satisfies a non-resonant property introduced by C. Foias and J.C. Saut in [17] to linearize the Navier–Stokes system in a bounded domain Ω of R3 with Dirichlet boundary conditions. For that purpose, we first prove that, generically with respect to the domain Ω with C5 boundary, all the eigenvalues of (SDΩ) are simple. That answers positively a question raised by J.H. Ortega and E. Zuazua in [27, Section 6]. The proofs of these results follow a standard strategy based on a contradiction argument requiring shape differentiation. One needs to shape differentiate at least twice the initial problem in the direction of carefully chosen domain variations. The main step of the contradiction argument amounts to study the evaluation of Dirichlet-to-Neumann operators associated to these domain variations.

DOI : 10.1016/j.anihpc.2014.09.007
Mots clés : Navier–Stokes equation, Simple eigenvalues, Resonance, Genericity
@article{AIHPC_2016__33_1_119_0,
     author = {Chitour, Y. and Kateb, D. and Long, R.},
     title = {Generic properties of the spectrum of the {Stokes} system with {Dirichlet} boundary condition in $ {\mathbb{R}}^{3}$},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {119--167},
     publisher = {Elsevier},
     volume = {33},
     number = {1},
     year = {2016},
     doi = {10.1016/j.anihpc.2014.09.007},
     mrnumber = {3436429},
     zbl = {1335.35163},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.007/}
}
TY  - JOUR
AU  - Chitour, Y.
AU  - Kateb, D.
AU  - Long, R.
TI  - Generic properties of the spectrum of the Stokes system with Dirichlet boundary condition in $ {\mathbb{R}}^{3}$
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 119
EP  - 167
VL  - 33
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.007/
DO  - 10.1016/j.anihpc.2014.09.007
LA  - en
ID  - AIHPC_2016__33_1_119_0
ER  - 
%0 Journal Article
%A Chitour, Y.
%A Kateb, D.
%A Long, R.
%T Generic properties of the spectrum of the Stokes system with Dirichlet boundary condition in $ {\mathbb{R}}^{3}$
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 119-167
%V 33
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.007/
%R 10.1016/j.anihpc.2014.09.007
%G en
%F AIHPC_2016__33_1_119_0
Chitour, Y.; Kateb, D.; Long, R. Generic properties of the spectrum of the Stokes system with Dirichlet boundary condition in $ {\mathbb{R}}^{3}$. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 119-167. doi : 10.1016/j.anihpc.2014.09.007. http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.007/

[1] Albert, J.H. Genericity of simple eigenvalues for elliptic PDE's, Proc. Am. Math. Soc., Volume 48 (1975), pp. 413–418 | MR | Zbl

[2] Alvarez, C.; Conca, C.; Friz, L.; Kavian, O.; Ortega, J.H. Identification of immersed obstacles via boundary measurements, Inverse Probl., Volume 21 (2005), pp. 1531–1552 | DOI | MR | Zbl

[3] Ammari, H.; Garapon, P.; Kang, H.; Lee, H. A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements, Q. Appl. Math., Volume 66 (2008), pp. 139–175 | MR | Zbl

[4] Ammari, H.; Kang, H. Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics, vol. 1846, Springer-Verlag, 2004 | MR | Zbl

[5] Arnold, V.I. Geometrical Method in the Theory of Ordinary Differential Equations, Springer, 1988 | MR | Zbl

[6] Beauchard, K.; Chitour, Y.; Kateb, D.; Long, R. Spectral controllability for 2d and 3d linear Schrödinger equations, J. Funct. Anal., Volume 256 (2009), pp. 3916–3976 | DOI | MR | Zbl

[7] Berger, M.; Gostiaux, B. Differential Geometry: Manifolds, Curves, and Surfaces, Graduate Texts in Mathematics, vol. 115, Springer-Verlag, 1988 | DOI | MR | Zbl

[8] Brezis, H. Analyse fonctionnelle: Théorie et applications, Collection Mathématiques appliquées pour la maîtrise, Masson, 1983 | MR | Zbl

[9] Chitour, Y.; Coron, J.-M.; Garavello, M. On conditions that prevent steady-state controllability of certain linear partial differential equations, Discrete Contin. Dyn. Syst., Volume 14 (2006) no. 4, pp. 643–672 | DOI | MR | Zbl

[10] de Rham, G. Differentiable Manifolds, A Series of Comprehensive Studies in Mathematics, vol. 266, Springer-Verlag, 1984 | Zbl

[11] Evans, L.C. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, AMS, 1998 | MR | Zbl

[12] Foias, C.; Hoang, L.; Olson, E.; Ziane, M. On the solutions to the normal form of the Navier–Stokes equations, Indiana Univ. Math. J., Volume 55 (2006) no. 2, pp. 631–686 | DOI | MR | Zbl

[13] Foias, C.; Hoang, L.; Olson, E.; Ziane, M. The normal form of the Navier–Stokes equations in suitable normed spaces, Ann. Inst. Henri Poincaré, C Anal. Non Linéaire, Volume 26 (2009) no. 5, pp. 1635–1673 | Numdam | MR | Zbl

[14] Gilbarg, D.; Trudinger, N. Elliptic Partial Differential Equations of Second Order, vol. 224, Springer, 2001 | MR | Zbl

[15] Foias, C.; Hoang, L.; Saut, J.C. Asymptotic integration of Navier–Stokes equations with potential forces. II. An explicit Poincaré–Dulac normal form, J. Funct. Anal., Volume 260 (2011), pp. 3007–3035 | DOI | MR | Zbl

[16] Foias, C.; Manley, O.; Rosa, R.; Temam, R. Navier–Stokes Equations and Turbulence, Encyclopedia of Mathematics and Its Applications, vol. 83, Cambridge University Press, 2001 | MR | Zbl

[17] Foias, C.; Saut, J.C. Linearization and normal form of the Navier–Stokes equations with potential forces, Ann. Inst. Henri Poincaré, C Anal. Non Linéaire, Volume 4 (1987) no. 1, pp. 1–47 | Numdam | MR | Zbl

[18] Girault, V.; Raviart, P.-A. Finite Element Methods for Navier–Stokes Equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, 1986 | DOI | MR | Zbl

[19] Henrot, A.; Pierre, M. Variation et optimisation de forme, Mathématiques et Applications, vol. 48, Springer, 2005 (SMAI) | DOI | MR

[20] Henry, D. Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations, vol. 318, Cambridge University Press, 2005 | MR | Zbl

[21] Hsiao, G.; Wendland, W.L. Boundary Integral Equations, Applied Mathematical Sciences, vol. 164, Springer, 2008 | MR | Zbl

[22] Kato, T. Perturbation Theory for Linear Operators, Springer, 1976 | MR | Zbl

[23] Ladyzhenskaya, O. The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, 1968 | MR | Zbl

[24] Micheletti, A.M. Perturbazione dello spettro dell'operatore di Laplace in relazione ad una variazione del campo, Ann. Sc. Norm. Super. Pisa, Volume 26 (1972), pp. 151–169 | Numdam | MR | Zbl

[25] Micheletti, A.M. Metrica per famiglie di domini limitati e proprietà generiche degli autovalori, Ann. Sc. Norm. Super. Pisa, Volume 26 (1972), pp. 683–694 | Numdam | MR | Zbl

[26] Micheletti, A.M. Perturbazione dello spettro di un operatore ellittico di tipo variazionale in relazione ad una variazione del campo, Ann. Mat. Pura Appl., Volume 97 (1972), pp. 267–281 | MR | Zbl

[27] Ortega, J.H.; Zuazua, E. Generic simplicity of the eigenvalues of the Stokes system in two space dimensions, Adv. Differ. Equ., Volume 6 (2001) no. 8, pp. 987–1023 | MR | Zbl

[28] Ortega, J.H.; Zuazua, E. On a constrained approximate controllability problem for the heat equation: addendum, J. Optim. Theory Appl., Volume 118 (2003) no. 1, pp. 183–190 | DOI | MR | Zbl

[29] Osses, A. A rotated multiplier applied to the controllability of waves, elasticity, and tangential stokes control, SIAM J. Control Optim., Volume 40 (2001) no. 3, pp. 777–800 | DOI | MR | Zbl

[30] Pereira, A.L.; Pereira, M.C. An extension of the method of rapidly oscillating solutions, Mat. Contemp., Volume 27 (2004), pp. 225–241 | MR | Zbl

[31] Pereira, M.C. Generic simplicity of the eigenvalues for a Dirichlet problem of the bilaplacian operator, Electron. J. Differ. Equ. (2004) no. 114, pp. 1–21 | MR | Zbl

[32] Pogorzelski, W. Integration Equations and Their Applications, vol. I, Pergamon Press, 1966 | Zbl

[33] Simon, J. Différentiation de problèmes aux limites par rapport au domaine, Universidad de Sevilla, 1991 (Lecture notes)

[34] Simon, J. Démonstration constructive d'un théorème de G. de Rham, C. R. Acad. Sci., Ser. 1 Math. (1993) | MR | Zbl

[35] Simon, J. Équations de Navier–Stokes, Université Blaise Pascal, Clermont-Ferrand, France, 2003 (Lecture notes)

[36] Stein, E. Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970 | MR | Zbl

[37] Temam, R. Navier–Stokes Equations: Theory and Numerical Analysis, American Mathematical Society, 2001 | MR | Zbl

[38] Yang, S.A. Evaluation of the Helmholtz boundary integral equation and its normal and tangential derivatives in two dimensions, J. Sound Vib., Volume 301 (2007), pp. 864–877 | MR | Zbl

Cité par Sources :