Long time behavior of solutions of a reaction–diffusion equation on unbounded intervals with Robin boundary conditions
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 67-92.

We study the long time behavior, as t, of solutions of

{ut=uxx+f(u),x>0,t>0,u(0,t)=bux(0,t),t>0,u(x,0)=u0(x)0,x0,
where b0 and f is an unbalanced bistable nonlinearity. By investigating families of initial data of the type {σϕ}σ>0, where ϕ belongs to an appropriate class of nonnegative compactly supported functions, we exhibit the sharp threshold between vanishing and spreading. More specifically, there exists some value σ such that the solution converges uniformly to 0 for any 0<σ<σ, and locally uniformly to a positive stationary state for any σ>σ. In the threshold case σ=σ, the profile of the solution approaches the symmetrically decreasing ground state with some shift, which may be either finite or infinite. In the latter case, the shift evolves as Clnt where C is a positive constant we compute explicitly, so that the solution is traveling with a pulse-like shape albeit with an asymptotically zero speed. Depending on b, but also in some cases on the choice of the initial datum, we prove that one or both of the situations may happen.

DOI : 10.1016/j.anihpc.2014.08.004
Classification : 35K57, 35K15, 35B40
Mots clés : Reaction–diffusion equation, Long time behavior, Robin boundary condition, Sharp threshold
@article{AIHPC_2016__33_1_67_0,
     author = {Chen, Xinfu and Lou, Bendong and Zhou, Maolin and Giletti, Thomas},
     title = {Long time behavior of solutions of a reaction{\textendash}diffusion equation on unbounded intervals with {Robin} boundary conditions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {67--92},
     publisher = {Elsevier},
     volume = {33},
     number = {1},
     year = {2016},
     doi = {10.1016/j.anihpc.2014.08.004},
     mrnumber = {3436427},
     zbl = {1332.35168},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.08.004/}
}
TY  - JOUR
AU  - Chen, Xinfu
AU  - Lou, Bendong
AU  - Zhou, Maolin
AU  - Giletti, Thomas
TI  - Long time behavior of solutions of a reaction–diffusion equation on unbounded intervals with Robin boundary conditions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 67
EP  - 92
VL  - 33
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2014.08.004/
DO  - 10.1016/j.anihpc.2014.08.004
LA  - en
ID  - AIHPC_2016__33_1_67_0
ER  - 
%0 Journal Article
%A Chen, Xinfu
%A Lou, Bendong
%A Zhou, Maolin
%A Giletti, Thomas
%T Long time behavior of solutions of a reaction–diffusion equation on unbounded intervals with Robin boundary conditions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 67-92
%V 33
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2014.08.004/
%R 10.1016/j.anihpc.2014.08.004
%G en
%F AIHPC_2016__33_1_67_0
Chen, Xinfu; Lou, Bendong; Zhou, Maolin; Giletti, Thomas. Long time behavior of solutions of a reaction–diffusion equation on unbounded intervals with Robin boundary conditions. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 67-92. doi : 10.1016/j.anihpc.2014.08.004. http://www.numdam.org/articles/10.1016/j.anihpc.2014.08.004/

[1] Alikakos, N.; Bates, P.W.; Fusco, G. Differential Equations and Mathematical Physics, Math. Sci. Eng., Volume vol. 186, Academic Press, Boston, MA (1992), pp. 1–24 (Birmingham, AL, 1990) | DOI | MR | Zbl

[2] Alikakos, N.; Fusco, G. Slow dynamics for the Cahn–Hilliard equation in higher space dimensions: the motion of bubbles, Arch. Ration. Mech. Anal., Volume 141 (1998), pp. 1–61 | DOI | MR | Zbl

[3] Angenent, S.B. The zero set of a solution of a parabolic equation, J. Reine Angew. Math., Volume 390 (1988), pp. 79–96 | MR | Zbl

[4] Aronson, D.G.; Weinberger, H.F. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial Differential Equations and Related Topics, Lect. Notes Math., vol. 446, Springer, Berlin, 1975, pp. 5–49 | DOI | MR | Zbl

[5] Aronson, D.G.; Weinberger, H.F. Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., Volume 30 (1978), pp. 33–76 | DOI | MR | Zbl

[6] Carr, J.; Pego, R. Invariant manifolds for metastable patterns in ut=ε2uxxf(u) , Proc. R. Soc. Edinb. A, Volume 116 (1990), pp. 133–160 | DOI | MR | Zbl

[7] Chen, X. Global asymptotic limit of solutions of the Cahn–Hilliard equation, J. Differ. Geom., Volume 44 (1996), pp. 262–311 | DOI | MR | Zbl

[8] Chen, X.; Guo, J.; Hamel, F.; Ninomiya, H.; Roquejoffre, J. Traveling waves with paraboloid like interface for balanced bistable dynamics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 24 (2007), pp. 369–393 | Numdam | MR | Zbl

[9] Du, Y.; Lou, B. Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc. (2014) (in press) | arXiv | MR

[10] Du, Y.; Matano, H. Convergence and sharp thresholds for propagation in nonlinear diffusion problems, J. Eur. Math. Soc., Volume 12 (2010), pp. 279–312 | MR | Zbl

[11] Fašangová, E.; Feireisl, E. The long-time behavior of solutions of parabolic problems on unbounded intervals: the influence of boundary conditions, Proc. R. Soc. Edinb. A, Volume 129 (1999), pp. 319–329 | DOI | MR | Zbl

[12] Feireisl, E.; Poláčik, P. Structure of periodic solutions and asymptotic behavior for time-periodic reaction–diffusion equations on R , Adv. Differ. Equ., Volume 5 (2000), pp. 583–622 | MR | Zbl

[13] Fife, P.C.; McLeod, J.B. The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., Volume 65 (1977), pp. 335–361 | MR | Zbl

[14] Fusco, G.; Hale, J.K. Slow-motion manifold, dormant instability, and singular perturbations, J. Dyn. Differ. Equ., Volume 1 (1989), pp. 75–94 | DOI | MR | Zbl

[15] Matano, H. Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math. Kyoto Univ., Volume 18 (1978), pp. 221–227 | MR | Zbl

[16] Zlatoš, A. Sharp transition between extinction and propagation of reaction, J. Am. Math. Soc., Volume 19 (2006), pp. 251–263 | MR | Zbl

Cité par Sources :