@article{AIHPC_2007__24_6_897_0, author = {Guerrero, S. and Imanuvilov, O. Yu.}, title = {Remarks on global controllability for the {Burgers} equation with two control forces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {897--906}, publisher = {Elsevier}, volume = {24}, number = {6}, year = {2007}, doi = {10.1016/j.anihpc.2006.06.010}, mrnumber = {2371111}, zbl = {1248.93024}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.010/} }
TY - JOUR AU - Guerrero, S. AU - Imanuvilov, O. Yu. TI - Remarks on global controllability for the Burgers equation with two control forces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 897 EP - 906 VL - 24 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.010/ DO - 10.1016/j.anihpc.2006.06.010 LA - en ID - AIHPC_2007__24_6_897_0 ER -
%0 Journal Article %A Guerrero, S. %A Imanuvilov, O. Yu. %T Remarks on global controllability for the Burgers equation with two control forces %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 897-906 %V 24 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.010/ %R 10.1016/j.anihpc.2006.06.010 %G en %F AIHPC_2007__24_6_897_0
Guerrero, S.; Imanuvilov, O. Yu. Remarks on global controllability for the Burgers equation with two control forces. Annales de l'I.H.P. Analyse non linéaire, Volume 24 (2007) no. 6, pp. 897-906. doi : 10.1016/j.anihpc.2006.06.010. http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.010/
[1] On the attainable set for scalar nonlinear conservation laws with boundary control, SIAM J. Control Optim. 36 (1) (1998) 290-312. | MR | Zbl
, ,[2] On approximating properties of solutions of the heat equation, in: Control Theory of Partial Differential Equations, Lecture Notes in Pure and Appl. Math., vol. 242, Chapman and Hall/CRC, Boca Raton, FL, 2005, pp. 43-50. | MR | Zbl
,[3] On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Control Optim. Calc. Var. 1 (1995/96) 35-75. | Numdam | Zbl
,[4] J.-M. Coron, Some open problems on the control of nonlinear partial differential equations, in: H. Berestycki, M. Bertsch, B. Peletier, L. Véron (Eds.), Perspectives in Nonlinear Partial Differential Equations: In Honor of Haïm Brezis, in: Contemporary Mathematics, American Mathematical Society, Providence, RI, in press. | MR
[5] Global asymptotic stabilization for controllable systems without drift, Math. Control Signals Systems 5 (3) (1992) 285-312. | MR | Zbl
,[6] Obstruction and some approximate controllability results for the Burgers equation and related problems, in: Control of Partial Differential Equations and Applications, Lecture Notes in Pure and Appl. Math., vol. 174, Dekker, New York, 1995, pp. 63-76. | MR | Zbl
,[7] On the controllability of Burgers system, C. R. Acad. Sci. Paris, Ser. I 341 (2005) 229-232. | MR | Zbl
, ,[8] On controllability of certain systems simulating a fluid flow, in: Flow Control, Minneapolis, MN, 1992, IMA Vol. Math. Appl., vol. 68, Springer, New York, 1995, pp. 149-184. | MR | Zbl
, ,[9] Exact boundary controllability of 3-D Euler equation, ESAIM Control Optim. Calc. Var. 5 (2000) 1-44. | Numdam | MR | Zbl
,[10] On the controllability of the Burgers equation, ESAIM Control Optim. Calc. Var. 3 (1998) 83-95. | Numdam | MR | Zbl
,[11] Non-Homogeneous Boundary Value Problems and Applications, vol. I, Translated from the French by P. Kenneth, Die Grundlehren der Mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. | Zbl
, ,Cited by Sources: