Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity
Annales de l'I.H.P. Analyse non linéaire, Volume 21 (2004) no. 1, pp. 121-137.
@article{AIHPC_2004__21_1_121_0,
     author = {Adami, Riccardo and Dell'Antonio, Gianfausto and Figari, Rodolfo and Teta, Alessandro},
     title = {Blow-up solutions for the {Schr\"odinger} equation in dimension three with a concentrated nonlinearity},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {121--137},
     publisher = {Elsevier},
     volume = {21},
     number = {1},
     year = {2004},
     doi = {10.1016/j.anihpc.2003.01.002},
     zbl = {1042.35070},
     mrnumber = {2037249},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2003.01.002/}
}
TY  - JOUR
AU  - Adami, Riccardo
AU  - Dell'Antonio, Gianfausto
AU  - Figari, Rodolfo
AU  - Teta, Alessandro
TI  - Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2004
DA  - 2004///
SP  - 121
EP  - 137
VL  - 21
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2003.01.002/
UR  - https://zbmath.org/?q=an%3A1042.35070
UR  - https://www.ams.org/mathscinet-getitem?mr=2037249
UR  - https://doi.org/10.1016/j.anihpc.2003.01.002
DO  - 10.1016/j.anihpc.2003.01.002
LA  - en
ID  - AIHPC_2004__21_1_121_0
ER  - 
%0 Journal Article
%A Adami, Riccardo
%A Dell'Antonio, Gianfausto
%A Figari, Rodolfo
%A Teta, Alessandro
%T Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity
%J Annales de l'I.H.P. Analyse non linéaire
%D 2004
%P 121-137
%V 21
%N 1
%I Elsevier
%U https://doi.org/10.1016/j.anihpc.2003.01.002
%R 10.1016/j.anihpc.2003.01.002
%G en
%F AIHPC_2004__21_1_121_0
Adami, Riccardo; Dell'Antonio, Gianfausto; Figari, Rodolfo; Teta, Alessandro. Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity. Annales de l'I.H.P. Analyse non linéaire, Volume 21 (2004) no. 1, pp. 121-137. doi : 10.1016/j.anihpc.2003.01.002. http://www.numdam.org/articles/10.1016/j.anihpc.2003.01.002/

[1] R. Adami, G. Dell'Antonio, R. Figari, A. Teta, The Cauchy problem for the Schrödinger equation in dimension three with a concentrated nonlinearity, Preprint, Département de mathématiques et applications, École normale supérieure, DMA-02-09, Ann. Inst. H. Poincaré Anal. Non Linéaire, in press. | Numdam | Zbl

[2] Adami R, Teta A, A simple model of concentrated nonlinearity, Operator Theory Adv. Appl. 108 (1999) 183-189. | MR | Zbl

[3] Adami R, Teta A, A class of nonlinear Schrödinger equation with concentrated nonlinearity, J. Funct. Anal. 180 (2001) 148-175. | MR | Zbl

[4] Albeverio S, Gesztesy F, Högh-Krohn R, Holden H, Solvable Models in Quantum Mechanics, Springer-Verlag, New York, 1988. | MR | Zbl

[5] Cazenave T, An Introduction to Nonlinear Schrödinger Equation, Textos de Métodos Matematicos, vol. 26, IMUFRJ, Rio de Janeiro, 1993.

[6] Cazenave T, Blow-up and Scattering in the Nonlinear Schrödinger Equation, Textos de Métodos Matematicos, vol. 30, IMUFRJ, Rio de Janeiro, 1996.

[7] Ginibre J, Velo G, On a class of nonlinear Schrödinger equations, I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979) 1-32. | MR | Zbl

[8] Kato T, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 46 (1987) 113-129. | EuDML | Numdam | MR | Zbl

[9] Merle F, Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys. 129 (1990) 223-240. | MR | Zbl

[10] Sayapova M.R, Yafaev D.R, The evolution operator for time-dependent potentials of zero radius, Proc. Steklov Inst. Math. 2 (1984) 173-180. | MR | Zbl

[11] Weinstein M.I, NLSE and sharp interpolation estimates, Comm. Math. Phys. 87 (1983) 567-576. | MR | Zbl

Cited by Sources: