@article{AIHPB_2003__39_2_325_0, author = {El Machkouri, Mohamed and Voln\'y, Dalibor}, title = {Contre-exemple dans le th\'eor\`eme central limite fonctionnel pour les champs al\'eatoires r\'eels}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {325--337}, publisher = {Elsevier}, volume = {39}, number = {2}, year = {2003}, doi = {10.1016/S0246-0203(02)00011-0}, mrnumber = {1962780}, zbl = {1014.60055}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/S0246-0203(02)00011-0/} }
TY - JOUR AU - El Machkouri, Mohamed AU - Volný, Dalibor TI - Contre-exemple dans le théorème central limite fonctionnel pour les champs aléatoires réels JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2003 SP - 325 EP - 337 VL - 39 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S0246-0203(02)00011-0/ DO - 10.1016/S0246-0203(02)00011-0 LA - fr ID - AIHPB_2003__39_2_325_0 ER -
%0 Journal Article %A El Machkouri, Mohamed %A Volný, Dalibor %T Contre-exemple dans le théorème central limite fonctionnel pour les champs aléatoires réels %J Annales de l'I.H.P. Probabilités et statistiques %D 2003 %P 325-337 %V 39 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/S0246-0203(02)00011-0/ %R 10.1016/S0246-0203(02)00011-0 %G fr %F AIHPB_2003__39_2_325_0
El Machkouri, Mohamed; Volný, Dalibor. Contre-exemple dans le théorème central limite fonctionnel pour les champs aléatoires réels. Annales de l'I.H.P. Probabilités et statistiques, Volume 39 (2003) no. 2, pp. 325-337. doi : 10.1016/S0246-0203(02)00011-0. http://www.numdam.org/articles/10.1016/S0246-0203(02)00011-0/
[1] A uniform central limit theorem for set-indexed partial-sum processes with finite variance, Ann. Probab. 14 (1986) 582-597. | MR | Zbl
, ,[2] Law of the iterated logarithm for set-indexed partial sum processes with finite variance, Z. Wahrsch. Verw. Gebiete 70 (1985) 591-608. | MR | Zbl
,[3] On functional central limit theorem for stationary martingale random fields, Acta. Math. Hung. 33 (1979) 307-316. | MR | Zbl
, ,[4] A uniform central limit theorem for nonuniform φ-mixing random fields, Ann. Probab. 19 (1991) 636-649. | Zbl
,[5] Entropie d'un groupe abélien de transformations, Z. Wahrsch. Verw. Geb. 25 (1972) 11-30. | MR | Zbl
,[6] J. Dedecker, Principes d'invariances pour les champs aléatoires stationnaires, PhD thesis, Université Paris XI Orsay, 1998.
[7] J. Dedecker, Exponential inequalities and functional central limit theorems for random fields, ESAIM, 2001, to appear. | EuDML | Numdam | MR | Zbl
[8] Strong convexity of pressure for lattice systems of classical statistical physics, Teoret. Mat. Fiz. 20 (1974) 223-234. | MR | Zbl
, ,[9] An invariance principle for certain probability limit theorems, Mem. Amer. Math. Soc. 6 (1951) 1-12. | MR | Zbl
,[10] Sample functions of the Gaussian process, Ann. Probab. 1 (1973) 66-103. | MR | Zbl
,[11] Variance of set-indexed sums of mixing random variables and weak convergence of set-indexed processes, Ann. Probab. 14 (1986) 817-839. | MR | Zbl
, ,[12] Commuting measure-preserving transformations, Israel J. Math. 12 (1972) 161-173. | MR | Zbl
, ,[13] The invariance principle for a lattice of random variables, Ann. Math. Statist. 39 (1968) 382-389. | MR | Zbl
,[14] Kahane-Khintchine inequalities and functional central limit theorem for stationary random fields, Stoch. Proc. Appl. 120 (2002) 285-299. | Zbl
,[15] Martingale-difference Gibbs random fields and central limit theorem, Ann. Acad. Sci. Fenn., Series A-I Math. 17 (1992) 105-110. | MR | Zbl
, ,[16] Entropy and isomorphism theorems for actions of amenable groups, Journal d'Analyse Mathématique 48 (1987) 1-141. | MR | Zbl
, ,[17] Empirical Processes: Theory and Applications, NSF-CBMS Regional Conference Series in Probability and Statistics, IMS-ASA, Hayward-Alexandria, 1990. | MR | Zbl
,[18] A uniform central limit theorem for partial-sum processes indexed by sets, London Math. Soc. Lect. Notes Series 79 (1983) 219-240. | MR | Zbl
,[19] Inequalities with applications to the weak convergence of random processes with multi-dimensional time parameters, Ann. Math. Statist. 40 (1969) 681-687. | MR | Zbl
,Cited by Sources: