Geometric presentations of Lie groups and their Dehn functions
Publications Mathématiques de l'IHÉS, Volume 125 (2017), pp. 79-219.

We study the Dehn function of connected Lie groups. We show that this function is always exponential or polynomially bounded, according to the geometry of weights and of the 2-cohomology of their Lie algebras. Our work, which also addresses algebraic groups over local fields, uses and extends Abels’ theory of multiamalgams of graded Lie algebras, in order to provide workable presentations of these groups.

DOI: 10.1007/s10240-016-0087-3
Cornulier, Yves 1; Tessera, Romain 1

1 Laboratoire de Mathématiques, Bâtiment 425, Université Paris-Sud 11 91405 Orsay France
@article{PMIHES_2017__125__79_0,
     author = {Cornulier, Yves and Tessera, Romain},
     title = {Geometric presentations of {Lie} groups and their {Dehn} functions},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {79--219},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {125},
     year = {2017},
     doi = {10.1007/s10240-016-0087-3},
     mrnumber = {3668649},
     zbl = {1428.22012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1007/s10240-016-0087-3/}
}
TY  - JOUR
AU  - Cornulier, Yves
AU  - Tessera, Romain
TI  - Geometric presentations of Lie groups and their Dehn functions
JO  - Publications Mathématiques de l'IHÉS
PY  - 2017
SP  - 79
EP  - 219
VL  - 125
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://www.numdam.org/articles/10.1007/s10240-016-0087-3/
DO  - 10.1007/s10240-016-0087-3
LA  - en
ID  - PMIHES_2017__125__79_0
ER  - 
%0 Journal Article
%A Cornulier, Yves
%A Tessera, Romain
%T Geometric presentations of Lie groups and their Dehn functions
%J Publications Mathématiques de l'IHÉS
%D 2017
%P 79-219
%V 125
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://www.numdam.org/articles/10.1007/s10240-016-0087-3/
%R 10.1007/s10240-016-0087-3
%G en
%F PMIHES_2017__125__79_0
Cornulier, Yves; Tessera, Romain. Geometric presentations of Lie groups and their Dehn functions. Publications Mathématiques de l'IHÉS, Volume 125 (2017), pp. 79-219. doi : 10.1007/s10240-016-0087-3. http://www.numdam.org/articles/10.1007/s10240-016-0087-3/

[Ab72] Abels, H. Kompakt definierbare topologische gruppen, Math. Ann., Volume 197 (1972), pp. 221-233 | DOI | MR | Zbl

[Ab87] Abels, H. Finite Presentability of S -Arithmetic Groups. Compact Presentability of Solvable Groups (1987) | DOI | Zbl

[ABDY13] Abrams, A.; Brady, N.; Dani, P.; Young, R. Homological and homotopical Dehn functions are different, Proc. Natl. Acad. Sci. USA, Volume 110 (2013), pp. 19206-19212 | DOI | MR | Zbl

[Al91] Alonzo, J. Inégalités isopérimétriques et quasi-isométries, C.R. Acad. Sci. Paris. Sér., Volume 311 (1991), pp. 761-764

[Ba60] Baumslag, G. Some aspects of groups with unique roots, Acta Math., Volume 104 (1960), pp. 217-303 | DOI | MR | Zbl

[BGSS92] Baumslag, G.; Gersten, S. M.; Shapiro, M.; Short, H. Automatic groups and amalgams, these proceedings, Algorithms and Classification in Combinatorial Group Theory (1992), pp. 179-194 | DOI

[BaMS93] Baumslag, G.; Miller, C. III; Short, H. Isoperimetric inequalities and the homology of groups, Invent. Math., Volume 113 (1993), pp. 531-560 | DOI | MR | Zbl

[BeBr97] Bestvina, M.; Brady, N. Morse theory and finiteness properties of groups, Invent. Math., Volume 129 (1997), pp. 445-470 | DOI | MR | Zbl

[BiS78] Bieri, R.; Strebel, R. Almost finitely presented soluble groups, Comment. Math. Helv., Volume 53 (1978), pp. 258-278 | DOI | MR | Zbl

[Bou] Bourbaki, N. Groupes et Algèbres de Lie (1981) | Zbl

[Bo95] Bowditch, B. A short proof that a subquadratic isoperimetric inequality implies a linear one, Mich. Math. J., Volume 42 (1995), pp. 103-107 | DOI | MR | Zbl

[BrG11] Breuillard, E.; Green, B. Approximate groups, I: the torsion-free nilpotent case, J. Inst. Math. Jussieu, Volume 10 (2011), pp. 37-57 | DOI | MR | Zbl

[Bri02] Bridson, M. The geometry of the word problem, Invitations to Geometry and Topology (2002), pp. 29-91

[C08] Cornulier, Y. Dimension of asymptotic cones of Lie groups, J. Topol., Volume 1 (2008), pp. 342-361 | DOI | MR | Zbl

[C11] Cornulier, Y. Asymptotic cones of Lie groups and cone equivalences, Ill. J. Math., Volume 55 (2011), pp. 237-259 | MR | Zbl

[CCMT15] Caprace, P.-E.; Cornulier, Y.; Monod, N.; Tessera, R. Amenable hyperbolic groups, J. Eur. Math. Soc., Volume 17 (2015), pp. 2903-2947 | DOI | MR | Zbl

[CT10] Cornulier, Y.; Tessera, R. Metabelian groups with quadratic Dehn function and Baumslag-Solitar groups, Confluentes Math., Volume 2 (2010), pp. 431-443 | DOI | MR | Zbl

[CT13] Cornulier, Y.; Tessera, R. Dehn function and asymptotic cones of Abels’ group, J. Topol., Volume 6 (2013), pp. 982-1008 | DOI | MR | Zbl

[Dru98] Druţu, C. Remplissage dans des réseaux de Q-rang 1 et dans des groupes résolubles, Pac. J. Math., Volume 185 (1998), pp. 269-305 | DOI | Zbl

[Dru04] Druţu, C. Filling in solvable groups and in lattices in semisimple groups, Topology, Volume 43 (2004), pp. 983-1033 | DOI | MR | Zbl

[DwGS] Dwork, B.; Gerotto, G.; Sullivan, F. An Introduction to G-Functions (1994) | Zbl

[ECHLPT92] Epstein, D.; Cannon, J.; Holt, D.; Levy, S.; Paterson, M.; Thurston William, W. Word Processing in Groups (1992) (xii+330 pp) | Zbl

[Fu] Fuchs, J. Affine Lie Algebras and Quantum Groups (1992) | Zbl

[FuH] Fulton, W.; Harris, J. Representation Theory. A First Course (2004) | Zbl

[Ger92] Gersten, S. M. Dehn functions and L1-norms of finite presentations, Algorithms and Classification in Combinatorial Group Theory (1992), pp. 195-224 | DOI

[Ger99] S. Gersten, Homological Dehn functions and the word problem, 1999, Unpublished manuscript (24 pages), http://www.math.utah.edu/~sg/Papers/df9.pdf.

[GH01] Groves, J.; Hermiller, S. Isoperimetric inequalities for soluble groups, Geom. Dedic., Volume 88 (2001), pp. 239-254 | DOI | MR | Zbl

[Gro93] Gromov, M. Asymptotic invariants of infinite groups, Geometric Group Theory (1993)

[GS99] Guba, V.; Sapir, M. On Dehn functions of free products of groups, Proc. Am. Math. Soc., Volume 127 (1999), pp. 1885-1891 | DOI | MR | Zbl

[Gui73] Guivarc’h, Y. Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. Fr., Volume 101 (1973), pp. 333-379 | DOI | Numdam | Zbl

[Gui80] Guivarc’h, Y. Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire, Astérisque, Volume 74 (1980), pp. 47-98 | Numdam | Zbl

[Ho77] Howe, R. E. The Fourier transform for nilpotent locally compact groups. I, Pac. J. Math., Volume 73 (1977), pp. 307-327 | DOI | MR | Zbl

[La54] Lazard, M. Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Éc. Norm. Supér. (3), Volume 71 (1954), pp. 101-190 | DOI | Numdam | MR | Zbl

[LP04] Leuzinger, E.; Pittet, Ch. On quadratic Dehn functions, Math. Z., Volume 248 (2004), pp. 725-755 | DOI | MR | Zbl

[Kac] Kac, V. G. Infinite Dimensional Lie Algebras (1990) | DOI | Zbl

[KL82] Kassel, C.; Loday, J.-L. Extensions centrales d’algèbres de Lie, Ann. Inst. Fourier, Volume 32 (1982), pp. 119-142 | DOI | Numdam | MR | Zbl

[Mag35] Magnus, W. Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann., Volume 111 (1935), pp. 259-280 | DOI | MR | Zbl

[Mal49a] Malcev, A. I. On a class of homogeneous spaces, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 13 (1949), pp. 9-32 English translation, Amer. Math. Soc. Transl. 39 (1951) | MR

[Mal49b] Malcev, A. I. Generalized nilpotent algebras and their associated groups, Mat. Sb. (N.S.), Volume 25 (1949), pp. 347-366 | MR

[NW08] Neeb, K-H.; Wagemann, F. The second cohomology of current algebras of general Lie algebras, Can. J. Math., Volume 60 (2008), pp. 892-922 | DOI | MR | Zbl

[Os02] Osin, D. V. Exponential radical of solvable Lie groups, J. Algebra, Volume 248 (2002), pp. 790-805 | DOI | MR | Zbl

[Se] Serre, J-P. Lie Algebras and Lie Groups (1992) | Zbl

[St70] Stewart, I. An algebraic treatment of Malcev’s theorems concerning nilpotent Lie groups and their Lie algebras, Compos. Math., Volume 22 (1970), pp. 289-312 | Numdam | MR | Zbl

[Var00] Varopoulos, N. A geometric classification of Lie groups, Rev. Mat. Iberoam., Volume 16 (2000), pp. 49-136 | DOI | MR | Zbl

[We11] Wenger, S. Nilpotent groups without exactly polynomial Dehn function, J. Topol., Volume 4 (2011), pp. 141-160 | DOI | MR | Zbl

[Y13a] Young, R. Filling inequalities for nilpotent groups through approximations, Groups Geom Dyn., Volume 7 (2013), pp. 977-1011 | DOI | MR | Zbl

[Y13b] Young, R. The Dehn function of SL(n;Z), Ann. Math., Volume 177 (2013), pp. 969-1027 | DOI | MR

Cited by Sources: