On two geometric realizations of an affine Hecke algebra
Publications Mathématiques de l'IHÉS, Volume 123 (2016), pp. 1-67.

The article is a contribution to the local theory of geometric Langlands duality. The main result is a categorification of the isomorphism between the (extended) affine Hecke algebra associated to a reductive group G and Grothendieck group of equivariant coherent sheaves on Steinberg variety of Langlands dual group Gˇ; this isomorphism due to Kazhdan–Lusztig and Ginzburg is a key step in the proof of tamely ramified local Langlands conjectures.

The paper is a continuation of the author’s joint work with Arkhipov, it relies on the technical material developed in a joint work with Yun.

DOI: 10.1007/s10240-015-0077-x
Keywords: Full Subcategory, Monoidal Category, Tensor Category, Geometric Realization, Coherent Sheave
Bezrukavnikov, Roman 1, 2

1 Department of Mathematics, Massachusetts Institute of Technology 77 Massachusetts ave. 02139 Cambridge MA USA
2 International Laboratory of Representation Theory and Mathematical Physics, National Research University Higher School of Economics 20 Myasnitskaya st. 101000 Moscow Russia
@article{PMIHES_2016__123__1_0,
     author = {Bezrukavnikov, Roman},
     title = {On two geometric realizations of an affine {Hecke} algebra},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--67},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {123},
     year = {2016},
     doi = {10.1007/s10240-015-0077-x},
     mrnumber = {3502096},
     zbl = {1345.14017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1007/s10240-015-0077-x/}
}
TY  - JOUR
AU  - Bezrukavnikov, Roman
TI  - On two geometric realizations of an affine Hecke algebra
JO  - Publications Mathématiques de l'IHÉS
PY  - 2016
SP  - 1
EP  - 67
VL  - 123
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://www.numdam.org/articles/10.1007/s10240-015-0077-x/
DO  - 10.1007/s10240-015-0077-x
LA  - en
ID  - PMIHES_2016__123__1_0
ER  - 
%0 Journal Article
%A Bezrukavnikov, Roman
%T On two geometric realizations of an affine Hecke algebra
%J Publications Mathématiques de l'IHÉS
%D 2016
%P 1-67
%V 123
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://www.numdam.org/articles/10.1007/s10240-015-0077-x/
%R 10.1007/s10240-015-0077-x
%G en
%F PMIHES_2016__123__1_0
Bezrukavnikov, Roman. On two geometric realizations of an affine Hecke algebra. Publications Mathématiques de l'IHÉS, Volume 123 (2016), pp. 1-67. doi : 10.1007/s10240-015-0077-x. http://www.numdam.org/articles/10.1007/s10240-015-0077-x/

[1.] Arkhipov, S.; Bezrukavnikov, R. Perverse sheaves on affine flags and Langlands dual group, Isr. J. Math., Volume 170 (2009), pp. 135-184 | DOI | MR | Zbl

[2.] Arkhipov, S.; Bezrukavnikov, R.; Ginzburg, V. Quantum groups, the loop Grassmannian, and the Springer resolution, J. Am. Math. Soc., Volume 17 (2004), pp. 595-678 | DOI | MR | Zbl

[3.] Arkhipov, S.; Gaitsgory, D. Another realization of the category of modules over the small quantum group, Adv. Math., Volume 173 (2003), pp. 114-143 | DOI | MR | Zbl

[4.] Arinkin, D.; Bezrukavnikov, R. Perverse coherent sheaves, Mosc. Math. J., Volume 10 (2010), pp. 3-29 | DOI | MR | Zbl

[5.] Arinkin, D.; Gaitsgory, D. Singular support of coherent sheaves and the geometric Langlands conjecture, Sel. Math. New Ser., Volume 21 (2015), pp. 1-199 | DOI | MR | Zbl

[6.] Beilinson, A. How to glue perverse sheaves, K-Theory, Arithmetic and Geometry (1987) | DOI | MR | Zbl

[7.] Beilinson, A.; Bernstein, J. A generalization of Casselman’s submodule theorem, Representation Theory of Reductive Groups (1983), pp. 35-52 | DOI | MR | Zbl

[8.] Beilinson, A.; Bernstein, J.; Deligne, P. Faisceaux pervers, Analysis and Topology on Singular Spaces, I (1982) | Numdam | MR | Zbl

[9.] Beilinson, A.; Bezrukavnikov, R.; Mirković, I. Tilting exercises, Mosc. Math. J., Volume 4 (2004), pp. 547-557 | DOI | MR | Zbl

[10.] D. Ben-Zvi and D. Nadler, The character theory of a complex group. | arXiv

[11.] Bernstein, J.; Lunts, V. Equivariant Sheaves and Functors (1994) | DOI | MR | Zbl

[12.] Bezrukavnikov, R. Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group, Isr. J. Math., Volume 170 (2009), pp. 185-206 | DOI | MR | Zbl

[13.] Bezrukavnikov, R. Noncommutative counterparts of the Springer resolution, Proceeding of the International Congress of Mathematicians (2006), pp. 1119-1144 | MR | Zbl

[14.] Bezrukavnikov, R. Cohomology of tilting modules over quantum groups and t-structures on derived categories of coherent sheaves, Invent. Math., Volume 166 (2006), pp. 327-357 | DOI | MR | Zbl

[15.] Bezrukavnikov, R. Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone, Represent. Theory, Volume 7 (2003), pp. 1-18 | DOI | MR | Zbl

[16.] Bezrukavnikov, R.; Braverman, A.; Mirković, I. Some results about the geometric Whittaker model, Adv. Math., Volume 186 (2004), pp. 143-152 | DOI | MR | Zbl

[17.] Bezrukavnikov, R.; Finkelberg, M. Equivariant Satake category and Kostant–Whittaker reduction, Mosc. Math. J., Volume 8 (2008), pp. 39-72 | DOI | MR | Zbl

[18.] Bezrukavnikov, R.; Lachowska, A. The small quantum group and the Springer resolution, Quantum Groups (2007), pp. 89-101 | DOI | MR | Zbl

[19.] Bezrukavnikov, R.; Lin, Q. Highest weight modules at the critical level and noncommutative Springer resolution, Contemp. Math., Volume 565 (2012), pp. 15-27 | DOI | MR | Zbl

[20.] Bezrukavnikov, R.; Mirković, I. Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution, Ann. Math., Volume 178 (2013), pp. 835-919 (with an Appendix by E. Sommers) | DOI | MR | Zbl

[21.] Bezrukavnikov, R.; Riche, S. Affine braid group actions on derived categories of Springer resolutions, Ann. Sci. Éc. Norm. Super., Volume 45 (2012), pp. 535-599 | DOI | Numdam | MR | Zbl

[22.] R. Bezrukavnikov and S. Riche, Hodge D-modules and braid group actions, in preparation.

[23.] Bezrukavnikov, R.; Yun, Z. On Koszul duality for Kac-Moody groups, Represent. Theory, Volume 17 (2013), pp. 1-98 (with Appendices by Z. Yun) | DOI | MR | Zbl

[24.] Chriss, N.; Ginzburg, V. Representation Theory and Complex Geometry (1997) | MR | Zbl

[25.] Deligne, P. La conjecture de Weil. II, Publ. Math. IHES, Volume 52 (1980), pp. 137-252 | DOI | Numdam | MR | Zbl

[26.] Deligne, P. Catégories tannakiennes, The Grothendieck Festschrift, Vol. II (1990), pp. 111-195 | MR | Zbl

[27.] Frenkel, E.; Gaitsgory, D.; Vilonen, K. Whittaker patterns in the geometry of moduli spaces of bundles on curves, Ann. Math., Volume 153 (2001), pp. 699-748 | DOI | MR | Zbl

[28.] Frenkel, E.; Gaitsgory, D. D-modules on the affine flag variety and representations of affine Kac-Moody algebras, Represent. Theory, Volume 13 (2009), pp. 477-608 | DOI | MR | Zbl

[29.] Gaitsgory, D. Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math., Volume 144 (2001), pp. 253-280 | DOI | MR | Zbl

[30.] Gaitsgory, D. Appendix: braiding compatibilities, Representation Theory of Algebraic Groups and Quantum Groups (2004), pp. 91-100 | DOI | MR | Zbl

[31.] D. Gaitsgory, The notion of category over an algebraic stack. | arXiv

[32.] D. Gaitsgory, Sheaves of categories and the notion of 1-affineness. | arXiv | MR

[33.] Gukov, S.; Witten, E. Gauge theory, ramification, and the geometric Langlands program, Current Developments in Mathematics (2008), pp. 35-180 | MR | Zbl

[34.] A. Grothendieck, Éléments de géométrie algébrique, III, Publ. Math. IHES, 11 (1961) (partie 1). | Numdam | MR | Zbl

[35.] Kazhdan, D.; Lusztig, G. Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math., Volume 87 (1987), pp. 153-215 | DOI | MR | Zbl

[36.] Lusztig, G. Cells in affine Weyl groups, Algebraic Groups and Related Topics (1985), pp. 255-287 | DOI | MR | Zbl

[37.] Lusztig, G. Cells in affine Weyl groups. IV, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math., Volume 36 (1989), pp. 297-328 | MR | Zbl

[38.] Lusztig, G. Singularities, character formulas and a q-analogue of weight multiplicities, Astérisque, Volume 101–102 (1983), pp. 208-229 | Numdam | MR | Zbl

[39.] Lusztig, G. Some examples of square integrable representations of semisimple p-adic groups, Trans. Am. Math. Soc., Volume 277 (1983), pp. 623-653 | MR | Zbl

[40.] Lusztig, G. Equivariant K-theory and representations of Hecke algebras, Proc. Am. Math. Soc., Volume 94 (1985), pp. 337-342 | MR | Zbl

[41.] Mirković, I.; Riche, S. Linear Koszul duality, Compos. Math., Volume 146 (2010), pp. 233-258 | DOI | MR | Zbl

[42.] I. Mirković and S. Riche, Linear Koszul duality and affine Hecke algebras. | arXiv

[43.] Neeman, A. The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Am. Math. Soc., Volume 9 (1996), pp. 205-236 | DOI | MR | Zbl

[44.] Neeman, A. The connection between the K-theory localization theorem of Thomasn, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. Éc. Norm. Super., Volume 25 (1992), pp. 547-566 | DOI | Numdam | MR | Zbl

[45.] Raynaud, M.; Gruson, L. Critères de platitude et de projectivité. Techniques de “platification” d’un module, Seconde partie, Invent. Math., Volume 13 (1971), pp. 1-89 | DOI | MR | Zbl

[46.] Thomason, R.; Trobaugh, T. Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift (1990), pp. 247-435 | DOI | MR

[47.] Verdier, J.-L. Spécialisation de faisceaux et monodromie modérée, Astérisque, Volume 101–102 (1983), pp. 332-364 | Numdam | MR | Zbl

Cited by Sources: