@article{TSG_2003-2004__22__125_0,
author = {Cordero-Erausquin, Dario},
title = {Quelques exemples d'application du transport de mesure en g\'eom\'etrie euclidienne et riemannienne},
journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
pages = {125--152},
year = {2003-2004},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {22},
mrnumber = {2136140},
zbl = {1117.49037},
language = {fr},
url = {https://www.numdam.org/item/TSG_2003-2004__22__125_0/}
}
TY - JOUR AU - Cordero-Erausquin, Dario TI - Quelques exemples d'application du transport de mesure en géométrie euclidienne et riemannienne JO - Séminaire de théorie spectrale et géométrie PY - 2003-2004 SP - 125 EP - 152 VL - 22 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/item/TSG_2003-2004__22__125_0/ LA - fr ID - TSG_2003-2004__22__125_0 ER -
%0 Journal Article %A Cordero-Erausquin, Dario %T Quelques exemples d'application du transport de mesure en géométrie euclidienne et riemannienne %J Séminaire de théorie spectrale et géométrie %D 2003-2004 %P 125-152 %V 22 %I Institut Fourier %C Grenoble %U https://www.numdam.org/item/TSG_2003-2004__22__125_0/ %G fr %F TSG_2003-2004__22__125_0
Cordero-Erausquin, Dario. Quelques exemples d'application du transport de mesure en géométrie euclidienne et riemannienne. Séminaire de théorie spectrale et géométrie, Tome 22 (2003-2004), pp. 125-152. https://www.numdam.org/item/TSG_2003-2004__22__125_0/
[1] , ET , Geometric inequalities via a general comparison principlefor interacting gases, Geom. Funct. Anal., 14 ( 2004), 215-244. | Zbl | MR
[2] , , , ET , Convex symmetrization and applications. Ann. Inst. H. Poincaré Anal Non Linéaire, 14, ( 1997), 275-293. | Zbl | MR | Numdam
[3] , Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11,4 ( 1976), 573-598. | Zbl | MR
[4] , ET Diffusions hypercontractives, in Séminaire de Probabilités XIX, Lecture Notes in Math., 1123, Springer ( 1985), 177-206. | Zbl | MR | Numdam
[5] , An elementary introduction to modem convex geometry, in Flavors of geometry, Math. Sci. Res. Inst. Publ. 31, Cambridge Univ. Press ( 1997),1-58. | Zbl
[6] , On a reverse form of the Brascamp-Lieb inequality, Invent. Math., 134 ( 1998), n°2, 335-361. | Zbl | MR
[7] , Optimal Young's inequality and its converse : a simple proof, Geom. Funct. Anal, 8 ( 1998), 234-242. | Zbl | MR
[8] , ET From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal., 10 ( 2000), 1028-1052. | Zbl | MR
[9] , ET , Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl (9) 80 ( 2001), no4, 669-696. | Zbl | MR
[10] , Convex set functions in d-space, Period. Math. Hungar.,6 ( 1975), 111-136. | Zbl | MR
[11] ET , On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal, 22 ( 1976), 366-389. | Zbl | MR
[12] , Décomposition polaire et réarrangement monotone des champs de vecteurs, C.R. Acad. Sci. Paris Sér. I Math., 305 ( 1987), 805-808. | Zbl | MR
[13] , Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl Math., 44 ( 1991), 375-417. | Zbl | MR
[14] ET Minimal rearrangements of Sobolev functions, J. Reine Angew. Math., 384 ( 1988), 153-179. | Zbl | MR
[15] , Some applications of mass transport to Gaussian type inequalities, Arch. Rational Mech. Anal., 161 ( 2002), 257-269. | Zbl | MR
[16] , , , Inequalities for generalized entropy and optimal transportation, in Recent Advances in the Theory and Applications of Mass Transport, Contemp. Math., 353, A.M.S., 2004. | Zbl | MR
[17] , ET , A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent Math., 146 ( 2001), 219-257. | Zbl | MR
[18] , ET , Prékopa-Leindler type inequalities on Riemannian manifolds, mass transport and Jacobi fields, Preprint ( 2004). | MR
[19] , ET , A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math., 182 ( 2004), n°2, 307-332. | Zbl | MR
[20] , Brunn-Minkowski inequality and its aftermath, J. Multivariate Anal., 10 ( 1980), 296-318. | Zbl | MR
[21] ET , The AB program in geometric analysis : sharp Sobolev inequalities and related problems, Mem. Amer.Math. Soc., 160 ( 2002), n°761. | Zbl | MR
[22] , ET , Riemannian Geometry, Springer-Verlag (Universitext), Berlin, 1990. | Zbl | MR
[23] , The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.), 39-3 ( 2002), 355-405. | Zbl | MR
[24] ET , A topological application of the isoperimetric inequatliry, Amer. J. Math., 105 ( 1983), 843-854. | Zbl | MR
[25] ET , Brunn-Minkowskischer Satz und Isoperimetrie, Math. Z, 66 ( 1956), 1-8. | Zbl | MR
[26] , Contributions to the theory of convex bodies, Michigan Math, J., 4 ( 1957), 39-52. | Zbl | MR
[27] , Concentration of measure and logarithmic Sobolev inequalities, in Séminaire de Probabilités XXXIII, Lecture Notes in Math. 1709, Springer ( 1999), 120-216. | Zbl | MR | Numdam
[28] , The geometry of Markov diffusion generators, Ann. Fac. Sci. Toulouse Math. (6)9 ( 2000), n°2, 305-366. | Zbl | MR | Numdam
[29] , Measure concentration, transportation cost, and functional inequalities, Summer School on Singular Phenomena and Scaling in Mathematica! Models, Bonn, 10-13 June 2003 (http ://www.lsp.ups-tlse.fr/Ledoux).
[30] , The concentration of measure phenomenon. American Mathematical Society, Providence, RI, 2001. | Zbl | MR
[31] , On a certain converse of Hölder's inequality, Acta Sci. Math., 33 ( 1972), 217-233. | Zbl | MR
[32] ET , Balls have the worst best Sobolev inequality, Preprint ( 2004). | Zbl
[33] , Some deviation inequalities, Geom.Funct. Anal., 1 ( 1991), 188-197. | Zbl | MR
[34] , Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles, Séminaire Bourbaki, Novembre 2003. | Zbl | MR | Numdam
[35] , Existence and uniqueness of monotone measure-preserving maps, Duke. Math. J., 80 ( 1995), 309-323. | Zbl | MR
[36] , A convexity principle for interacting gases, Adv. Math., 128 ( 1997), 153-179. | Zbl | MR
[37] , Polar factorizatîon of maps on Riemannian manifolds, Geom. Funct. Anal., 11 ( 2001), n°3, 589-608. | Zbl | MR
[38] ET , Asymptotic theory of finite-dimensional normed spaces, LNM n°1200, Springer, Berlin, 1986. With an appendix by M. Gromov. | Zbl | MR
[39] , Mémoire sur la théorie des déblais et des remblais, in Histoire de l'Académie Royale des Sciences (Année 1781), Imprimerie Royale, Paris ( 1784), 666-704.
[40] , The geometry of dissipative evolution equations : the porous medium equation, Comm. Partial Differential Equations, 26 ( 2001), n° 1-2,101-174. | Zbl | MR
[41] ET , Generalization of an inequality byTalagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 ( 2000), 361-400. | Zbl | MR
[42] , Logarithmic concave measures with application to stochastic programming, Acta Sci. Math., 32 ( 1971), 301-315. | Zbl | MR
[43] , On logarithmic concave measures and functions, Acta Sci. Math. (Szeged), 34 ( 1973), 335-343. | Zbl | MR
[44] , Convex Bodies : the Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993. | Zbl | MR
[45] ET , Transport inequalities, gradient estimates, entropy and Ricci curvature, à paraître dans Comm. Pure Appl. Math. | Zbl | MR
[46] , Best constants in Sobolev inequality, Ann. Mat Pura Appl. (IV), 110 ( 1976), 353-372. | Zbl | MR
[47] , Topicsin Optimal Transportation, Graduate Studies in Math. 58, American Mathematical Society, Providence, RI, 2003. | Zbl | MR





