@article{TSG_1997-1998__16__43_0,
author = {Barbosa, Jo\~ao Lucas Marques and Sa Earp, Ricardo},
title = {Prescribed mean curvature hypersurfaces in $H^{n+1}$ with convex planar boundary, {II}},
journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
pages = {43--79},
year = {1997-1998},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {16},
zbl = {0942.53044},
language = {en},
url = {https://www.numdam.org/item/TSG_1997-1998__16__43_0/}
}
TY - JOUR
AU - Barbosa, João Lucas Marques
AU - Sa Earp, Ricardo
TI - Prescribed mean curvature hypersurfaces in $H^{n+1}$ with convex planar boundary, II
JO - Séminaire de théorie spectrale et géométrie
PY - 1997-1998
SP - 43
EP - 79
VL - 16
PB - Institut Fourier
PP - Grenoble
UR - https://www.numdam.org/item/TSG_1997-1998__16__43_0/
LA - en
ID - TSG_1997-1998__16__43_0
ER -
%0 Journal Article
%A Barbosa, João Lucas Marques
%A Sa Earp, Ricardo
%T Prescribed mean curvature hypersurfaces in $H^{n+1}$ with convex planar boundary, II
%J Séminaire de théorie spectrale et géométrie
%D 1997-1998
%P 43-79
%V 16
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/item/TSG_1997-1998__16__43_0/
%G en
%F TSG_1997-1998__16__43_0
Barbosa, João Lucas Marques; Sa Earp, Ricardo. Prescribed mean curvature hypersurfaces in $H^{n+1}$ with convex planar boundary, II. Séminaire de théorie spectrale et géométrie, Tome 16 (1997-1998), pp. 43-79. https://www.numdam.org/item/TSG_1997-1998__16__43_0/
[1] , Hypersurfaces with Given Mean Curvature and Quasilinear Elliptic Equations with Strong Nonlinearities, Mat. Sbornik 75, 604-638 ( 1968). | Zbl | MR
[2] , Geometric Problems in Quasilinear Elliptic Equations, Russian Math. Surveys 25,45-109 ( 1970). | Zbl | MR
[3] , Geometria Hiperbólica. 20° Colóquio Brasileiro de Matematica, ( 1995).
[4] and , Stability of Hypersurfaces with Constant r-Mean Curvature, Annals of Global Analysis and Geometry, 15, 277-297, ( 1997). | Zbl | MR
[5] and , New Results on Prescribed Mean Curvature Hypersurfaces in Space Forms, Anais da Acad. Bras. de Ciências 67,1-5 ( 1995). | Zbl | MR
[6] and , Prescribed Mean Curvature Hypersurfaces in Hn+1 ( - l ) with Convex Planar Boundary, I. To appear in Geometriae Dedicata 71, 61-74 ( 1998). | Zbl | MR
[7] and , Geometric Configurationsof Constant Mean Curvature Surfaces with Planar Boundary, Anais da Acad. Bras. de Ciências 63, 5-19 ( 1991). | Zbl | MR
[8] and , Special Weingarten Surfaces with Boundary a Round Circle, Annales de la Faculté de Sciences de Toulouse 2 VI, 243-255 ( 1997). | Zbl | Numdam
[9] , , and , Structure Theorems for Constant Mean Curvarure Surfaces Bounded by a Planar Curve, Indiana Univ. Math. J. 40,333-343 ( 1991). | Zbl | MR
[10] , and , Nonlinear Second-order Eiliptic Equations V.The Dirichlet Problem for Weingarten Hypersurfaces, Comm. on Pure and Applied Math 61,47-70 ( 1988). | Zbl | MR
[11] , Sobre Hipersuperflcies com Curvatura Média Constante no Espaço Hiperbólico, Doctoral thesis, IMPA, 1985.
[12] and , Elliptic Partial Differential Equations of Second Order, Springer-Verlag ( 1983). | Zbl | MR
[13] , Uma Equação do Tipo Monge-Ampère, Dissertação de Mestrado, PUC-Rio ( 1995).
[14] , Compact Constant Mean Curvature Surfaces in Euclidean Three-Space, J.Diff. Geometry 33.683-715( 1991). | Zbl | MR
[15] , , and , Constant Mean Curvature Surfaces in Hyperbolic Space, American J. of Math. 114, 1-143 ( 1992). | Zbl | MR
[16] , Global Geometry of Extremal Surfaces in Three-Space, Doctoral thesis, University of California, Berkeley ( 1985).
[17] , Constant Mean Curvature Surfaces with boundary in the hyperbolic space, preprint 1996. | MR
[18] , and , Existence of Constant Mean Curvature Graphs in Hyperbolic Space, submitted to Calculus of Variations and Partial Differential Equations. | Zbl
[19] and , Constant Mean Curvature Discs with Bounded Area, Proceedings of A.M.S. 123, 1555-1558 ( 1995). | Zbl | MR
[20] , Hypersurfaces de Courbure Constante dans l'Espace Hyperbolique, Thèse de Doctorat, Université de Paris VII, Paris ( 1995).
[21] and , Some Remarks on Embedded Hypersurfaces in Hyperbolic Space of Constant Mean Curvature and Spherical boundary, Ann. Glob. An. and Geom. 13, 23-30 ( 1995). | Zbl | MR
[22] and , Some remarks on Positive Scalar and Gauss-Kronecker Curvature Hypersurfaces of Rn+1 and Hn+l, Annales de l'Institut Fourier, 47, (4), 1209-1218 ( 1997). | Zbl | MR | Numdam | EuDML
[23] and , Some Properties of Hypersurfaces of Prescribed Mean Curvature in Hn+1, Bull. Sc. Math. (6) 120, 537-553 ( 1996). | Zbl | MR
[24] and , Some Remarks on Compact Constant Mean Curvature Hypersurfaces in a Halfspace on Hn+1, to appear in the J. of Geometry. | Zbl
[25] and , On the Existence and Uniqueness of Constant Mean Curvature Hypersurfaces in Hyperbolic Space, Geometric Analysis and the Calculus of Variation, ed. J. Jost, International Press, Cambridge, 253-266 ( 1996). | Zbl | MR
[26] , The Gauss Curvature and Minkowski Problems in Space Forms, Contemporary Mathematics 101, 107-123 ( 1989). | Zbl | MR
[27] and , Maximum Principles in Differential Equations, Elglewood Cliffs, New Jersey Prentice-Hall, ( 1967). | Zbl | MR
[28] and , Some Problems in Analysis and Geometry, to appear in the volume Complex Analysis in Several Variables, Hadronic Press Inc., Florida, USA, ( 1998), ed. Th. Rassias. | Zbl
[29] , Hypersurfaces of Constant Curvature in Space Forms, Bulletin des Sciences Mathématiques, 2° série, 117,211-239 ( 1993). | Zbl | MR
[30] and , Constant Mean Curvature Surfaces in a Half-Space of R3 with Boundary in the Boundary of a Half-Space, J. Diff. Geometry 44, 807-817 ( 1996). | Zbl | MR
[31] and , The Geometry of ProperlyEmbedded Special Surfaces in R3; e.g., Surfaces Satisfying aH + bK = 1, where a and b are Positive, Duke Mathematical Journal, 73, (2), 291-306 ( 1994). | Zbl | MR
[32] , Recent Developments on the Structure of Compact Surfaces with Planar Boundary, The Problem of Plateau (edited by Th. M. Rassias), World Scientific, 245-257 ( 1992). | Zbl | MR
[33] , On two Mean Curvature Equations in Hyperbolic Space, to appear in the volume New Approches in Nonlinear Analysis, Hadronic Press Inc., Florida, USA, ( 1998), ed. Th. Rassias. | Zbl
[34] and , Introduction à la Géométrie Hyperbolique et aux Surfaces de Riemann, Ed. Diderot Multimedia, Paris, 1997. | Zbl
[35] and , Some Applications of Maximum Principle to Hypersurfaces Theory in Euclidean and Hyperbolic Space. To appear in the volume New Approches in Nonlinear Analysis, Hadronic Press Inc., Florida, USA, ( 1998), ed. Th. Rassias. | Zbl
[36] and , Existence and uniqueness of minimal graphs in hyperbolic space, preprint. | Zbl
[37] and , Symmetry of Properly Embedded Special Weingarten Surfaces in H3, to appear. | Zbl
[38] , Uniqueness, Symmetry, and Embeddedness of Minimal Surfaces, J.Diff. Geometry, 18, 791-809 ( 1983). | Zbl | MR
[39] , Surfaces de Courbure Moyenne Constante dans les Espaces Euclidien et Hyperbolic, doctorat theses, Paris VII, ( 1997).






